[fdc30e]: / sisfall_clean.py

Download this file

566 lines (454 with data), 24.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import pandas as pd
import numpy as np
import warnings
import time
warnings.filterwarnings('ignore')
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
path = '/Users/mattjohnson/Desktop/Python2018/sisfall/SubjectDataFrames/acm_SA'
subjectList = []
firstIndex = 1
lastIndex = 4
print('*',firstIndex, 'to', lastIndex-1, '...')
for i in range(firstIndex, lastIndex):
data = pd.read_csv(path + str(i).zfill(2) + '.csv')
data = data.drop('Unnamed: 0', axis=1)
df = data[['x1', 'y1', 'z1', 'x2', 'y2', 'z2', 'activity', 'subject', 'trial']]
subjectList.append(df)
# Codes for ADLs
dailies = ['D01', 'D02', 'D03', 'D04', 'D05', 'D06', 'D07', 'D08', 'D09', 'D10', 'D11', 'D12', 'D13', 'D14', 'D15',
'D16', 'D17', 'D18', 'D19']
# Codes for Falls
falls = ['F01', 'F02', 'F03', 'F04', 'F05', 'F06', 'F07', 'F08', 'F09', 'F10', 'F11', 'F12', 'F13', 'F14', 'F15']
# Lists to hold dataframes sorted by activity (ADLs and Falls)
adl_list = []
fall_list = []
# Iterate through subject data and sort into ADLs and Falls
for s in subjectList:
for d in dailies:
tempdf = s[s['activity'] == d]
adl_list.append(tempdf)
for f in falls:
tempdf = s[s['activity'] == f]
fall_list.append(tempdf)
# Titles for fall activities
fall_titles = ['Fall forward while walking caused by a slip', 'Fall backward while walking caused by a slip',
'Lateral fall while walking caused by a slip', 'Fall forward while walking caused by a trip',
'Fall forward while jogging caused by a trip', 'Vertical fall while walking caused by fainting',
'Fall while walking, with use of hands in a table to dampen fall, caused by fainting',
'Fall forward when trying to get up', 'Lateral fall when trying to get up',
'Fall forward when trying to sit down', 'Fall backward when trying to sit down', 'Lateral fall when trying to sit down',
'Fall forward while sitting, caused by fainting or falling asleep',
'Fall backward while sitting, caused by fainting or falling asleep',
'Lateral fall while sitting, caused by fainting or falling asleep']
# Titles for ADLs
adl_titles = ['Walking slowly', 'Walking quickly', 'Jogging slowly', 'Jogging quickly', 'Walking upstairs and downstairs slowly',
'Walking upstairs and downstairs quickly','Slowly sit in a half height chair, wait a moment, and up slowly',
'Quickly sit in a half height chair, wait a moment, and up quickly',
'Slowly sit in a low height chair, wait a moment, and up slowly','Quickly sit in a low height chair, wait a moment, and up quickly',
'Sitting a moment, trying to get up, and collapse into a chair',
'Sitting a moment, lying slowly, wait a moment, and sit again','Sitting a moment, lying quickly, wait a moment, and sit again',
'Being on oneís back change to lateral position, wait a moment, and change to oneís back',
'Standing, slowly bending at knees, and getting up', 'Standing, slowly bending without bending knees, and getting up',
'Standing, get into a car, remain seated and get out of the car','Stumble while walking',
'Gently jump without falling (trying to reach a high object)']
from scipy.signal import butter, lfilter, freqz
# Filter requirements.
order = 4
fs = 200.0 # sample rate, Hz
cutoff = 5.0 # desired cutoff frequency of the filter, Hz
# From??????
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y
# Codes for trials
trials = ['R01', 'R02', 'R03', 'R04', 'R05']
horiz_std_mag_THRESHOLD = 170 # Set threshold for Horizontal Standard Deviation Magnitude
horiz_vec_mag_THRESHOLD = 400 # Set threshold for Horizontal Sum Vector Magnitude
vector_mag_THRESHOLD = 900 # Set threshold for Sum Vector Magnitude
gyro_horiz_std_THRESHOLD = 170
# Lists to hold prepared fall and ADL dataframes
fall_df_list = []
adl_df_list = []
# Lists to hold sliding windows of 1.25s with a 50% overlap
windowList_adl = []
windowList_fall = []
windowHighlights_adl = []
falseAlarms = []
# Method that takes in a dataframe and kind=['f', 'a'] and stores sliding windows of 1.25s
# with a 50% overlap
def sliding_window(dataframe, kind):
k = 0
for i in range(0, len(dataframe) - 256, 128):
w = 256 # Size of sliding window (256 points at 200Hz = 1.25 seconds)
w1 = dataframe.iloc[i:i + w][:]
if ((w1['horiz_std_mag9'].max() >= horiz_std_mag_THRESHOLD) * 1 + (
w1['horiz_vector_mag9'].max() >= horiz_vec_mag_THRESHOLD) * 1
+ (w1['vm'].max() >= vector_mag_THRESHOLD) * 1 + (
w1['gyro_horiz_std_mag'].max() >= gyro_horiz_std_THRESHOLD) * 1 >= 3):
w1['Fall'] = 1
if kind == 'a':
falseAlarms.append(k)
print('k:', k, 'i:', i, '\n')
print('False Alarm: hstd9:', w1['horiz_std_mag9'].max(), 'hvm9:', w1['horiz_vector_mag9'].max())
print('\tvm:', w1['vm'].max(), 'hvm9:', 'ghstd:', w1['gyro_horiz_std_mag'].max())
windowHighlights_adl.append(1)
else:
w1['Fall'] = 0
if kind == 'a':
windowHighlights_adl.append(0)
if kind == 'f': # If fall
windowList_fall.append(w1)
else: # If ADL
windowList_adl.append(w1)
k += 1
# Method that takes in a kind=['f', 'a'] and prepares respective data
def prepare_data(kind):
if kind == 'f': # If fall
putList, takeList = fall_df_list, fall_list
else: # If ADL
putList, takeList = adl_df_list, adl_list
start = time.time() # Timer for testing
for i in range(0, len(takeList)): # Iterate through the takeList (fall_list or adl_list)
my_df = takeList[i].copy() # copy dataframe from list
new_df = pd.DataFrame() # placeholder
for trial in trials: # Iterate through trials (1-5)
# Get relevant trial data
trial_df = my_df[my_df['trial'] == trial]
tempdf = pd.DataFrame() # dataframe for putting into filter
# Low Pass Buttersworth Filter and remove bias
tempdf['ax'], tempdf['ay'], tempdf['az'] = trial_df['x1'], trial_df['y1'], trial_df['z1']
tempdf = tempdf.reset_index(drop=True)
tempdf['fx'] = pd.Series(butter_lowpass_filter(trial_df['x1'], cutoff, fs, order))
tempdf['fy'] = pd.Series(butter_lowpass_filter(trial_df['y1'], cutoff, fs, order))
tempdf['fz'] = pd.Series(butter_lowpass_filter(trial_df['z1'], cutoff, fs, order))
tempdf['bx'] = tempdf['fx'].diff()
tempdf['by'] = tempdf['fy'].diff()
tempdf['bz'] = tempdf['fz'].diff()
tempdf = tempdf.reset_index(drop=True)
trial_df = trial_df.reset_index(drop=True)
tempdf['gx'], tempdf['gy'], tempdf['gz'] = trial_df['x2'], trial_df['y2'], trial_df['z2']
# Rolling averages
tempdf['y_roll'] = pd.Series(tempdf['by'].rolling(200).mean())
tempdf['fy_roll'] = pd.Series(tempdf['fy'].rolling(200).mean())
tempdf['gy_roll'] = pd.Series(tempdf['by'].rolling(200).mean())
# Rolling standard deviations
tempdf['bx_std'] = tempdf['bx'].rolling(200).std()
tempdf['by_std'] = tempdf['by'].rolling(200).std()
tempdf['bz_std'] = tempdf['bz'].rolling(200).std()
tempdf['fx_std'] = tempdf['fx'].rolling(200).std()
tempdf['fy_std'] = tempdf['fy'].rolling(200).std()
tempdf['fz_std'] = tempdf['fz'].rolling(200).std()
tempdf['gx_std'] = tempdf['fx'].rolling(200).std()
tempdf['gy_std'] = tempdf['fy'].rolling(200).std()
tempdf['gz_std'] = tempdf['fz'].rolling(200).std()
# Integral stuff
tempdf['xsum'] = pd.expanding_sum(((abs(tempdf['ax']).rolling(2).sum() / 2) * (1 / 200)).fillna(0))
tempdf['ysum'] = pd.expanding_sum(((abs(tempdf['ay']).rolling(2).sum() / 2) * (1 / 200)).fillna(0))
tempdf['zsum'] = pd.expanding_sum(((abs(tempdf['az']).rolling(2).sum() / 2) * (1 / 200)).fillna(0))
tempdf['time'] = 1 / 200
tempdf['time'] = pd.expanding_sum(tempdf['time'])
# C10 Signal Magnitude Area
tempdf['SigMagArea'] = (tempdf['xsum'] + tempdf['ysum'] + tempdf['zsum']) / tempdf['time']
# C11
tempdf['HorizSigMagArea'] = (tempdf['xsum'] + tempdf['zsum']) / tempdf['time']
# Sum vector magnitude
tempdf['vm'] = np.sqrt(tempdf['fx'] ** 2 + tempdf['fy'] ** 2 + tempdf['fz'] ** 2)
# Maximum peak to peak acceleration amplitude
tempdf['Amax'] = (tempdf['vm'].rolling(200).max())
tempdf['Amin'] = (tempdf['vm'].rolling(200).min())
# C3
tempdf['peak_diff'] = tempdf['Amax'] - tempdf['Amin']
# Angle from horizontal to z-axis
tempdf['angle_from_horiz'] = np.arctan2(np.sqrt(tempdf['fx'] ** 2 + tempdf['fz'] ** 2), -tempdf['fy']) * 180 / np.pi
tempdf['angle_std'] = pd.rolling_std(tempdf['angle_from_horiz'], 200)
# had to make versions of this to put into sliding window, will change once I
# confirm they're the same as the others below
tempdf['horiz_std_mag9'] = np.sqrt(tempdf['fx_std'] ** 2 + tempdf['fz_std'] ** 2)
tempdf['horiz_vector_mag9'] = np.sqrt(tempdf['fx'] ** 2 + tempdf['fz'] ** 2)
tempdf['std_mag9'] = np.sqrt(tempdf['fx_std'] ** 2 + tempdf['fy_std'] ** 2 + tempdf['fz_std'] ** 2)
tempdf['diff_std_mag9'] = np.sqrt(tempdf['bx_std'] ** 2 + tempdf['by_std'] ** 2 + tempdf['bz_std'] ** 2)
tempdf['horiz_mag2'] = np.sqrt(tempdf['bx'] ** 2 + tempdf['bz'] ** 2)
tempdf['horiz_std_mag2'] = np.sqrt(tempdf['bx_std'] ** 2 + tempdf['bz_std'] ** 2)
tempdf['vector_mag2'] = np.sqrt(tempdf['bx'] ** 2 + tempdf['by'] ** 2 + tempdf['bz'] ** 2)
tempdf['gyro_horiz_std_mag'] = np.sqrt(tempdf['gx_std'] ** 2 + tempdf['gz_std'] ** 2)
tempdf['gyro_vector_mag'] = np.sqrt(tempdf['gx'] ** 2 + tempdf['gy'] ** 2 + tempdf['gz'] ** 2)
tempdf['gyro_horiz_mag'] = np.sqrt(tempdf['gx'] ** 2 + tempdf['gz'] ** 2)
tempdf['gyro_std_mag'] = np.sqrt(tempdf['gx_std'] ** 2 + tempdf['gy_std'] ** 2 + tempdf['gz_std'] ** 2)
tempdf = pd.concat(
[tempdf.reset_index(drop=True), trial_df[['activity', 'subject', 'trial']].reset_index(drop=True)],
axis=1)
new_df = pd.concat([new_df.reset_index(drop=True), tempdf])
sliding_window(tempdf, kind)
# differential vector mag
new_df['vector_mag'] = np.sqrt(new_df['fx'] ** 2 + new_df['fy'] ** 2 + new_df['fz'] ** 2)
# C2
new_df['horiz_mag'] = np.sqrt(new_df['fx'] ** 2 + new_df['fz'] ** 2)
#
new_df['vert'] = new_df['by'] - new_df['y_roll']
new_df['vert2'] = new_df['ay'] - new_df['y_roll']
new_df['vert3'] = new_df['fy'] - new_df['fy_roll']
# C9
new_df['std_mag2'] = np.sqrt(new_df['bx_std'] ** 2 + new_df['by_std'] ** 2 + new_df['bz_std'] ** 2)
putList.append(new_df.fillna(0))
print('Completed... It took', time.time() - start, 'seconds.')
prepare_data('f') # Prepare Fall Data
prepare_data('a') # Prepare ADL Data
print('ADL dataframes:',len(adl_df_list), '\t\tFall dataframes:', len(fall_df_list))
print('ADL windows:', len(windowList_adl), '\t\tFall windows:', len(windowList_fall))
wList_f = windowList_fall[:] # Copy of fall window list
wList_a = windowList_adl[:]
# putting together falls and adls
fall_df = pd.concat(fall_df_list)
adl_df = pd.concat(adl_df_list)
all_df = pd.concat([fall_df, adl_df]).fillna(0) # Filling nulls with zeroes
horiz_std_mag_THRESHOLD = 155 # Set threshold for Horizontal Standard Deviation Magnitude
horiz_vec_mag_THRESHOLD = 400 # Set threshold for Horizontal Sum Vector Magnitude
vector_mag_THRESHOLD = 750 # Set threshold for Sum Vector Magnitude
gyro_horiz_std_THRESHOLD = 150
belowThresh = 0 # Keep track of windows below thresholds
aboveThresh = 0 # Keep track of windows above thresholds
i = 0 # placeholder
lastActInd = 0 # Last activity index
lastTrialNum = 0 # Last trial number
fallTrialList = [] #
listInFallTrialList = [] #
missedFalls = 0
for window in wList_f: # Iterate through fall windows
windNum = i # Set window index
respWindNum = i % 22 # Set respective window index (0-21)
activityIndex = int(i / (22 * 5)) # Calculate activity index (0-13/14?)
trialNum = (int(i / 22)) % 5 # Calculate trial number (0-4)
# Custom setting for thresholds, currently need to pass 2/3 thresholds to pass
if ((window['horiz_std_mag9'].max() >= horiz_std_mag_THRESHOLD) * 1 + (
window['horiz_vector_mag9'].max() >= horiz_vec_mag_THRESHOLD) * 1
+ (window['vm'].max() >= vector_mag_THRESHOLD) * 1 + (
window['gyro_horiz_std_mag'].max() >= gyro_horiz_std_THRESHOLD) * 1 >= 1):
aboveThresh += 1
if (activityIndex == lastActInd):
if (trialNum == lastTrialNum):
listInFallTrialList.append(respWindNum)
lastTrialNum = trialNum
lastActInd = activityIndex
else:
fallTrialList.append(listInFallTrialList)
listInFallTrialList = []
listInFallTrialList.append(respWindNum)
lastActInd = activityIndex
diff = (trialNum - lastTrialNum)
absdiff = diff % 5
if absdiff > 1:
for j in range(absdiff - 1):
fallTrialList.append([])
missedFalls += 1
lastTrialNum = trialNum
else:
diff = (trialNum - lastTrialNum)
absdiff = diff % 5
activity_diff = (activityIndex - lastActInd)
fallTrialList.append(listInFallTrialList)
if (activity_diff > 0) & (trialNum != 0):
for k in range(3 - absdiff):
fallTrialList.append([])
missedFalls += 1
if absdiff > 1:
for j in range(absdiff - 1):
fallTrialList.append([])
missedFalls += 1
listInFallTrialList = []
listInFallTrialList.append(respWindNum)
lastTrialNum = trialNum
lastActInd = activityIndex
else:
belowThresh += 1
i += 1
fallTrialList.append(listInFallTrialList)
print('below:', belowThresh)
print('above:', aboveThresh)
FTL = fallTrialList[:]
print('len fallTrialList:', len(FTL))
print('missed falls:', missedFalls)
print('false alarms:', len(falseAlarms), ':', falseAlarms)
fall_windows = pd.concat(wList_f)
adl_windows = pd.concat(wList_a)
all_windows = pd.concat([fall_windows, adl_windows])
print('COMPLETED')
# Titles for fall activities
fall_titles = ['Fall forward while walking caused by a slip', 'Fall backward while walking caused by a slip',
'Lateral fall while walking caused by a slip', 'Fall forward while walking caused by a trip',
'Fall forward while jogging caused by a trip', 'Vertical fall while walking caused by fainting',
'Fall while walking, with use of hands in a table to dampen fall, caused by fainting',
'Fall forward when trying to get up', 'Lateral fall when trying to get up',
'Fall forward when trying to sit down', 'Fall backward when trying to sit down', 'Lateral fall when trying to sit down',
'Fall forward while sitting, caused by fainting or falling asleep',
'Fall backward while sitting, caused by fainting or falling asleep',
'Lateral fall while sitting, caused by fainting or falling asleep']
# Titles for ADLs
adl_titles = ['Walking slowly', 'Walking quickly', 'Jogging slowly', 'Jogging quickly', 'Walking upstairs and downstairs slowly',
'Walking upstairs and downstairs quickly','Slowly sit in a half height chair, wait a moment, and up slowly',
'Quickly sit in a half height chair, wait a moment, and up quickly',
'Slowly sit in a low height chair, wait a moment, and up slowly','Quickly sit in a low height chair, wait a moment, and up quickly',
'Sitting a moment, trying to get up, and collapse into a chair',
'Sitting a moment, lying slowly, wait a moment, and sit again','Sitting a moment, lying quickly, wait a moment, and sit again',
'Being on oneís back change to lateral position, wait a moment, and change to oneís back',
'Standing, slowly bending at knees, and getting up', 'Standing, slowly bending without bending knees, and getting up',
'Standing, get into a car, remain seated and get out of the car','Stumble while walking',
'Gently jump without falling (trying to reach a high object)']
dailies = ['D01', 'D02', 'D03', 'D04', 'D05', 'D06', 'D07', 'D08', 'D09', 'D10', 'D11', 'D12', 'D13', 'D14', 'D15',
'D16', 'D17', 'D18', 'D19']
falls = ['F01', 'F02', 'F03', 'F04', 'F05', 'F06', 'F07', 'F08', 'F09', 'F10', 'F11', 'F12', 'F13', 'F14', 'F15']
fs = 200.0 # frequency samplet
subjectCodes = ['SA01', 'SA02', 'SA03', 'SA04']
def get_trial_time(index, kind):
r = 5
if kind == 'f':
n = 3000.0
t = np.linspace(0, 15.0, n, endpoint=False)
else:
if index in list(range(0, 4)):
T = 100 # seconds
elif index in [4, 5, 16]:
T = 25
else:
T = 12
n = int(T * fs) # total number of samples
t = np.linspace(0, T, n, endpoint=False)
if index <= 3:
r = 1
return t, int(n), int(r)
## index w <-- activity = F[w+1], eg. index=4 gives a df that contains activity F05
## This makes sense since data_list[0] contains activity F01
def plot_trials(index, subjectIndex, kind):
if kind == 'f':
correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls
else:
correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies
new_df = correctList[index + 15 * subjectIndex]
t, n, r = get_trial_time(index, kind)
T = int(n / fs)
l = list(range(0, int(1000 * T), int(1000 * 0.625)))
l = np.array(l) / 1000
xcoords = list(l)
plt.figure(figsize=(15, 2 * r))
for i in range(0, r):
curr_df = new_df[i * n:i * n + n]
if len(curr_df) != 0:
if len(curr_df) != n:
curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1])
plt.subplot(r, 1, i + 1)
plt.plot(t, curr_df['fx'], 'b-', label='x')
plt.plot(t, curr_df['fy'], 'r-', label='y')
plt.plot(t, curr_df['fz'], 'y-', label='z')
for xc in xcoords:
plt.axvline(x=xc)
plt.grid()
labs = list(range(0, len(xcoords) - 2))
plt.xticks(xcoords, labs)
plt.legend()
plt.ylabel('trial' + str(i + 1))
if i == 0:
plt.title(subjectCodes[subjectIndex] + ' - ' + correctCodes[index] + ':' + correctTitles[index])
if kind == 'f':
tempA = FTL[5 * index + i + 75 * subjectIndex]
if len(tempA) > 0:
shadeStart = tempA[0]
shadeFin = tempA[len(tempA) - 1] + 2
plt.axvspan(shadeStart * .625, shadeFin * .625, color='red', alpha=0.5)
plt.subplots_adjust(hspace=0.35)
plt.show()
def plot_one_from_each(index, kind):
if kind == 'f':
correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls
else:
correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies
plt.figure(figsize=(15, 10))
for i in range(0, 5):
if (index + i + 1) == len(correctList): return
new_df = correctList[index + i]
t, n, r = get_trial_time(index, kind)
try:
curr_df = new_df[0:n]
if len(curr_df) != n:
curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1])
plt.subplot(5, 1, i + 1)
plt.plot(t, curr_df['bx'], 'b-', label='x')
plt.plot(t, curr_df['by'], 'r-', label='y')
plt.plot(t, curr_df['bz'], 'y-', label='z')
plt.grid()
plt.legend()
plt.ylabel('Acc')
plt.title(correctCodes[index + i] + ' ' + correctTitles[index + i])
except:
print('')
plt.subplots_adjust(hspace=0.4)
plt.show()
def plot_feats(index, tri, kind):
if kind == 'f':
correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls
else:
correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies
t, n, r = get_trial_time(index, kind)
new_df = correctList[index]
curr_df = new_df[tri * n:tri * n + n]
feat_list = ['vector_mag', 'vector_mag2', 'horiz_mag', 'vert', 'std_mag9', 'horiz_std_mag9',
'peak_diff', 'HorizSigMagArea', 'angle_from_horiz', 'gyro_horiz_std_mag']
colour_list = ['b-', 'r-', 'k-', 'c-', 'C2', 'C4', 'C1', 'C5', 'C6', 'C7']
x = len(feat_list)
plt.figure(figsize=(15, 2 * x))
for i, feat, colour in zip(range(0, x), feat_list, colour_list):
plt.subplot(x, 1, i + 1)
plt.plot(t, curr_df[feat], colour, label=feat)
plt.grid()
plt.legend()
plt.ylabel(feat)
if i == 0: plt.title(correctCodes[index] + ' ' + correctTitles[index])
plt.subplots_adjust(hspace=0.35)
plt.show()
def plot_trial(index, tri, kind):
if kind == 'f':
correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls
else:
correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies
new_df = correctList[index]
t, n, r = get_trial_time(index, kind)
plt.figure(figsize=(15, 24))
xtypes = ['ax', 'fx', 'bx', 'gx']
ytypes = ['ay', 'fy', 'by', 'gy']
ztypes = ['az', 'fz', 'bz', 'gz']
ylabs = ['raw acc (m/s^2)', 'filtered', 'filt differential', 'gyro']
for i in range(0, len(xtypes)):
curr_df = new_df[tri * n:tri * n + n]
if len(curr_df) != n:
curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1])
plt.subplot(12, 1, i + 1)
plt.plot(t, curr_df[xtypes[i]], 'b-', label='x')
plt.plot(t, curr_df[ytypes[i]], 'r-', label='y')
plt.plot(t, curr_df[ztypes[i]], 'y-', label='z')
plt.grid()
plt.legend()
plt.ylabel(ylabs[i])
if i == 0: plt.title(correctCodes[index] + ' ' + correctTitles[index])
curr_df = correctList[index][0:int(n)]
if len(curr_df) != n:
curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1])
feat_list = ['vector_mag', 'vector_mag2', 'horiz_mag', 'vert', 'std_mag9', 'horiz_std_mag9',
'peak_diff', 'HorizSigMagArea', 'angle_from_horiz', 'gyro_horiz_std_mag']
colour_list = ['b-', 'r-', 'k-', 'c-', 'C2', 'C4', 'C1', 'C5', 'C6', 'C7']
x = len(feat_list) + len(xtypes)
plt.figure(figsize=(15, 2 * x))
for i, feat, colour in zip(range(0, x), feat_list, colour_list):
plt.subplot(12, 1, i + 1)
plt.plot(t, curr_df[feat], colour, label=feat)
plt.grid()
plt.legend()
plt.ylabel(feat)
if i == 0: plt.title(correctCodes[index] + ' ' + correctTitles[index])
plt.subplots_adjust(hspace=0.35)
plt.show()