|
a |
|
b/datasets/dataset_classifier.py |
|
|
1 |
import os,sys |
|
|
2 |
import numpy as np |
|
|
3 |
from PIL import Image as PILImage |
|
|
4 |
import torch |
|
|
5 |
import torch.nn.functional as F |
|
|
6 |
from torch.utils import data as data |
|
|
7 |
from torchvision import transforms as transforms |
|
|
8 |
|
|
|
9 |
# dataset for sign detection and char detection |
|
|
10 |
class COVID_CT_DATA(data.Dataset): |
|
|
11 |
|
|
|
12 |
def __init__(self, **kwargs): |
|
|
13 |
super(COVID_CT_DATA).__init__() |
|
|
14 |
self.stage = kwargs['stage'] |
|
|
15 |
# this returns the path to data dir |
|
|
16 |
self.data = kwargs['data'] |
|
|
17 |
self.fs = sorted(os.listdir(self.data)) |
|
|
18 |
self.size = kwargs['img_size'] |
|
|
19 |
# this returns the path to |
|
|
20 |
self.img_fname = None |
|
|
21 |
|
|
|
22 |
def transform_img(self, img): |
|
|
23 |
# Faster R-CNN does the normalization |
|
|
24 |
t_ = transforms.Compose([ |
|
|
25 |
#transforms.ToPILImage(), |
|
|
26 |
transforms.Resize(self.size), |
|
|
27 |
transforms.ToTensor(), |
|
|
28 |
]) |
|
|
29 |
img = t_(img) |
|
|
30 |
return img |
|
|
31 |
|
|
|
32 |
def load_img_label(self, idx): |
|
|
33 |
lab=torch.zeros(3, dtype=torch.float) |
|
|
34 |
lab[int(self.fs[idx].split('_')[0])] = 1 |
|
|
35 |
im = PILImage.open(os.path.join(self.data, self.fs[idx])) |
|
|
36 |
if im.mode !='RGB': |
|
|
37 |
im = im.convert(mode='RGB') |
|
|
38 |
im = self.transform_img(im) |
|
|
39 |
return im, lab |
|
|
40 |
|
|
|
41 |
#'magic' method: size of the dataset |
|
|
42 |
def __len__(self): |
|
|
43 |
return len(os.listdir(self.data)) |
|
|
44 |
|
|
|
45 |
# return one datapoint |
|
|
46 |
def __getitem__(self, idx): |
|
|
47 |
X,y = self.load_img_label(idx) |
|
|
48 |
return X,y |
|
|
49 |
|
|
|
50 |
|