import os,sys
import numpy as np
from PIL import Image as PILImage
import torch
import torch.nn.functional as F
from torch.utils import data as data
from torchvision import transforms as transforms
# dataset for sign detection and char detection
class COVID_CT_DATA(data.Dataset):
def __init__(self, **kwargs):
super(COVID_CT_DATA).__init__()
self.stage = kwargs['stage']
# this returns the path to data dir
self.data = kwargs['data']
self.fs = sorted(os.listdir(self.data))
self.size = kwargs['img_size']
# this returns the path to
self.img_fname = None
def transform_img(self, img):
# Faster R-CNN does the normalization
t_ = transforms.Compose([
#transforms.ToPILImage(),
transforms.Resize(self.size),
transforms.ToTensor(),
])
img = t_(img)
return img
def load_img_label(self, idx):
lab=torch.zeros(3, dtype=torch.float)
lab[int(self.fs[idx].split('_')[0])] = 1
im = PILImage.open(os.path.join(self.data, self.fs[idx]))
if im.mode !='RGB':
im = im.convert(mode='RGB')
im = self.transform_img(im)
return im, lab
#'magic' method: size of the dataset
def __len__(self):
return len(os.listdir(self.data))
# return one datapoint
def __getitem__(self, idx):
X,y = self.load_img_label(idx)
return X,y