|
a |
|
b/models/models2d.py |
|
|
1 |
import torch.nn as nn |
|
|
2 |
from efficientnet_pytorch import EfficientNet as efficientnet |
|
|
3 |
from torchvision import models |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
class HeartNet(nn.Module): |
|
|
7 |
def __init__(self, num_classes=7): |
|
|
8 |
super(HeartNet, self).__init__() |
|
|
9 |
|
|
|
10 |
self.features = nn.Sequential( |
|
|
11 |
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), |
|
|
12 |
nn.ELU(inplace=True), |
|
|
13 |
nn.BatchNorm2d(64, eps=0.001), |
|
|
14 |
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), |
|
|
15 |
nn.ELU(inplace=True), |
|
|
16 |
nn.BatchNorm2d(64, eps=0.001), |
|
|
17 |
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
18 |
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), |
|
|
19 |
nn.ELU(inplace=True), |
|
|
20 |
nn.BatchNorm2d(128, eps=0.001), |
|
|
21 |
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), |
|
|
22 |
nn.ELU(inplace=True), |
|
|
23 |
nn.BatchNorm2d(128, eps=0.001), |
|
|
24 |
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
25 |
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), |
|
|
26 |
nn.ELU(inplace=True), |
|
|
27 |
nn.BatchNorm2d(256, eps=0.001), |
|
|
28 |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), |
|
|
29 |
nn.ELU(inplace=True), |
|
|
30 |
nn.BatchNorm2d(256, eps=0.001), |
|
|
31 |
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
32 |
) |
|
|
33 |
|
|
|
34 |
self.classifier = nn.Sequential( |
|
|
35 |
nn.Linear(16 * 16 * 256, 2048), |
|
|
36 |
nn.ELU(inplace=True), |
|
|
37 |
nn.BatchNorm1d(2048, eps=0.001), |
|
|
38 |
nn.Dropout(0.5), |
|
|
39 |
nn.Linear(2048, num_classes), |
|
|
40 |
) |
|
|
41 |
|
|
|
42 |
def forward(self, x): |
|
|
43 |
x = self.features(x) |
|
|
44 |
x = x.view(x.size(0), 16 * 16 * 256) |
|
|
45 |
x = self.classifier(x) |
|
|
46 |
return x |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
class MobileNetV2(models.MobileNetV2): |
|
|
50 |
def __init__(self, num_classes=8): |
|
|
51 |
super().__init__(num_classes=num_classes) |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
class AlexNet(models.AlexNet): |
|
|
55 |
def __init__(self, num_classes=8): |
|
|
56 |
super().__init__(num_classes=num_classes) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def VGG16(num_classes=8): |
|
|
60 |
model = models.vgg16_bn() |
|
|
61 |
model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, num_classes) |
|
|
62 |
return model |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def ResNet18(num_classes=8): |
|
|
66 |
model = models.resnet18() |
|
|
67 |
model.fc = nn.Linear(model.fc.in_features, num_classes) |
|
|
68 |
return model |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
def ResNet34(num_classes=8): |
|
|
72 |
model = models.resnet34() |
|
|
73 |
model.fc = nn.Linear(model.fc.in_features, num_classes) |
|
|
74 |
return model |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
def ShuffleNet(num_classes=8): |
|
|
78 |
model = models.shufflenet_v2_x1_0() |
|
|
79 |
model.fc = nn.Linear(model.fc.in_features, num_classes) |
|
|
80 |
return model |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
def EfficientNetB4(num_classes=8): |
|
|
84 |
model = efficientnet.from_name("efficientnet-b4") |
|
|
85 |
model._fc = nn.Linear(model._fc.in_features, num_classes) |
|
|
86 |
return model |