Diff of /models/models2d.py [000000] .. [fbbdf8]

Switch to unified view

a b/models/models2d.py
1
import torch.nn as nn
2
from efficientnet_pytorch import EfficientNet as efficientnet
3
from torchvision import models
4
5
6
class HeartNet(nn.Module):
7
    def __init__(self, num_classes=7):
8
        super(HeartNet, self).__init__()
9
10
        self.features = nn.Sequential(
11
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
12
            nn.ELU(inplace=True),
13
            nn.BatchNorm2d(64, eps=0.001),
14
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
15
            nn.ELU(inplace=True),
16
            nn.BatchNorm2d(64, eps=0.001),
17
            nn.MaxPool2d(kernel_size=2, stride=2),
18
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
19
            nn.ELU(inplace=True),
20
            nn.BatchNorm2d(128, eps=0.001),
21
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
22
            nn.ELU(inplace=True),
23
            nn.BatchNorm2d(128, eps=0.001),
24
            nn.MaxPool2d(kernel_size=2, stride=2),
25
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
26
            nn.ELU(inplace=True),
27
            nn.BatchNorm2d(256, eps=0.001),
28
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
29
            nn.ELU(inplace=True),
30
            nn.BatchNorm2d(256, eps=0.001),
31
            nn.MaxPool2d(kernel_size=2, stride=2),
32
        )
33
34
        self.classifier = nn.Sequential(
35
            nn.Linear(16 * 16 * 256, 2048),
36
            nn.ELU(inplace=True),
37
            nn.BatchNorm1d(2048, eps=0.001),
38
            nn.Dropout(0.5),
39
            nn.Linear(2048, num_classes),
40
        )
41
42
    def forward(self, x):
43
        x = self.features(x)
44
        x = x.view(x.size(0), 16 * 16 * 256)
45
        x = self.classifier(x)
46
        return x
47
48
49
class MobileNetV2(models.MobileNetV2):
50
    def __init__(self, num_classes=8):
51
        super().__init__(num_classes=num_classes)
52
53
54
class AlexNet(models.AlexNet):
55
    def __init__(self, num_classes=8):
56
        super().__init__(num_classes=num_classes)
57
58
59
def VGG16(num_classes=8):
60
    model = models.vgg16_bn()
61
    model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, num_classes)
62
    return model
63
64
65
def ResNet18(num_classes=8):
66
    model = models.resnet18()
67
    model.fc = nn.Linear(model.fc.in_features, num_classes)
68
    return model
69
70
71
def ResNet34(num_classes=8):
72
    model = models.resnet34()
73
    model.fc = nn.Linear(model.fc.in_features, num_classes)
74
    return model
75
76
77
def ShuffleNet(num_classes=8):
78
    model = models.shufflenet_v2_x1_0()
79
    model.fc = nn.Linear(model.fc.in_features, num_classes)
80
    return model
81
82
83
def EfficientNetB4(num_classes=8):
84
    model = efficientnet.from_name("efficientnet-b4")
85
    model._fc = nn.Linear(model._fc.in_features, num_classes)
86
    return model