import torch.nn as nn
from efficientnet_pytorch import EfficientNet as efficientnet
from torchvision import models
class HeartNet(nn.Module):
def __init__(self, num_classes=7):
super(HeartNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ELU(inplace=True),
nn.BatchNorm2d(64, eps=0.001),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.ELU(inplace=True),
nn.BatchNorm2d(64, eps=0.001),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ELU(inplace=True),
nn.BatchNorm2d(128, eps=0.001),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
nn.ELU(inplace=True),
nn.BatchNorm2d(128, eps=0.001),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ELU(inplace=True),
nn.BatchNorm2d(256, eps=0.001),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ELU(inplace=True),
nn.BatchNorm2d(256, eps=0.001),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(16 * 16 * 256, 2048),
nn.ELU(inplace=True),
nn.BatchNorm1d(2048, eps=0.001),
nn.Dropout(0.5),
nn.Linear(2048, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 16 * 16 * 256)
x = self.classifier(x)
return x
class MobileNetV2(models.MobileNetV2):
def __init__(self, num_classes=8):
super().__init__(num_classes=num_classes)
class AlexNet(models.AlexNet):
def __init__(self, num_classes=8):
super().__init__(num_classes=num_classes)
def VGG16(num_classes=8):
model = models.vgg16_bn()
model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, num_classes)
return model
def ResNet18(num_classes=8):
model = models.resnet18()
model.fc = nn.Linear(model.fc.in_features, num_classes)
return model
def ResNet34(num_classes=8):
model = models.resnet34()
model.fc = nn.Linear(model.fc.in_features, num_classes)
return model
def ShuffleNet(num_classes=8):
model = models.shufflenet_v2_x1_0()
model.fc = nn.Linear(model.fc.in_features, num_classes)
return model
def EfficientNetB4(num_classes=8):
model = efficientnet.from_name("efficientnet-b4")
model._fc = nn.Linear(model._fc.in_features, num_classes)
return model