--- a +++ b/models/models2d.py @@ -0,0 +1,86 @@ +import torch.nn as nn +from efficientnet_pytorch import EfficientNet as efficientnet +from torchvision import models + + +class HeartNet(nn.Module): + def __init__(self, num_classes=7): + super(HeartNet, self).__init__() + + self.features = nn.Sequential( + nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), + nn.ELU(inplace=True), + nn.BatchNorm2d(64, eps=0.001), + nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), + nn.ELU(inplace=True), + nn.BatchNorm2d(64, eps=0.001), + nn.MaxPool2d(kernel_size=2, stride=2), + nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), + nn.ELU(inplace=True), + nn.BatchNorm2d(128, eps=0.001), + nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), + nn.ELU(inplace=True), + nn.BatchNorm2d(128, eps=0.001), + nn.MaxPool2d(kernel_size=2, stride=2), + nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), + nn.ELU(inplace=True), + nn.BatchNorm2d(256, eps=0.001), + nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), + nn.ELU(inplace=True), + nn.BatchNorm2d(256, eps=0.001), + nn.MaxPool2d(kernel_size=2, stride=2), + ) + + self.classifier = nn.Sequential( + nn.Linear(16 * 16 * 256, 2048), + nn.ELU(inplace=True), + nn.BatchNorm1d(2048, eps=0.001), + nn.Dropout(0.5), + nn.Linear(2048, num_classes), + ) + + def forward(self, x): + x = self.features(x) + x = x.view(x.size(0), 16 * 16 * 256) + x = self.classifier(x) + return x + + +class MobileNetV2(models.MobileNetV2): + def __init__(self, num_classes=8): + super().__init__(num_classes=num_classes) + + +class AlexNet(models.AlexNet): + def __init__(self, num_classes=8): + super().__init__(num_classes=num_classes) + + +def VGG16(num_classes=8): + model = models.vgg16_bn() + model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, num_classes) + return model + + +def ResNet18(num_classes=8): + model = models.resnet18() + model.fc = nn.Linear(model.fc.in_features, num_classes) + return model + + +def ResNet34(num_classes=8): + model = models.resnet34() + model.fc = nn.Linear(model.fc.in_features, num_classes) + return model + + +def ShuffleNet(num_classes=8): + model = models.shufflenet_v2_x1_0() + model.fc = nn.Linear(model.fc.in_features, num_classes) + return model + + +def EfficientNetB4(num_classes=8): + model = efficientnet.from_name("efficientnet-b4") + model._fc = nn.Linear(model._fc.in_features, num_classes) + return model