|
a |
|
b/featurebased-approach/subfunctions/stackbeats.m |
|
|
1 |
function [M,RES] = stackbeats(signal,qrs,T_LENGTH,NB_BINS) |
|
|
2 |
% Stack and wraps beats onto a matrix M |
|
|
3 |
% RES = time reference to resample from bins to time |
|
|
4 |
% |
|
|
5 |
% -- |
|
|
6 |
% ECG classification from single-lead segments using Deep Convolutional Neural |
|
|
7 |
% Networks and Feature-Based Approaches - December 2017 |
|
|
8 |
% |
|
|
9 |
% Released under the GNU General Public License |
|
|
10 |
% |
|
|
11 |
% Copyright (C) 2017 Fernando Andreotti, Oliver Carr |
|
|
12 |
% University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017 |
|
|
13 |
% fernando.andreotti@eng.ox.ac.uk |
|
|
14 |
% |
|
|
15 |
% |
|
|
16 |
% For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 |
|
|
17 |
% |
|
|
18 |
% Referencing this work |
|
|
19 |
% |
|
|
20 |
% Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). |
|
|
21 |
% Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect |
|
|
22 |
% Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France). |
|
|
23 |
% |
|
|
24 |
% Last updated : December 2017 |
|
|
25 |
% |
|
|
26 |
% This program is free software: you can redistribute it and/or modify |
|
|
27 |
% it under the terms of the GNU General Public License as published by |
|
|
28 |
% the Free Software Foundation, either version 3 of the License, or |
|
|
29 |
% (at your option) any later version. |
|
|
30 |
% |
|
|
31 |
% This program is distributed in the hope that it will be useful, |
|
|
32 |
% but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
33 |
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
34 |
% GNU General Public License for more details. |
|
|
35 |
% |
|
|
36 |
% You should have received a copy of the GNU General Public License |
|
|
37 |
% along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
38 |
|
|
|
39 |
% Parameter |
|
|
40 |
if size(signal,1) < size(signal,2), signal = signal'; end |
|
|
41 |
|
|
|
42 |
phase = FECGx_kf_PhaseCalc(qrs,length(signal)); |
|
|
43 |
ini_cycles = find(phase(2:end)<0&phase(1:end-1)>0)+1; % start of cycles |
|
|
44 |
cycle_len = diff(ini_cycles); % distance between cycles |
|
|
45 |
end_cycles = ini_cycles(1:end-1)+cycle_len-1; % start of cycles |
|
|
46 |
meanPhase = linspace(-pi,pi,NB_BINS); |
|
|
47 |
RES = 2.*round((median(cycle_len)+1)/2)-1; |
|
|
48 |
% stacking cycles |
|
|
49 |
cycle = arrayfun(@(x) interp1(phase(ini_cycles(x):end_cycles(x)),... |
|
|
50 |
signal(ini_cycles(x):end_cycles(x)),meanPhase,'spline'),... |
|
|
51 |
1:length(ini_cycles)-1,'UniformOutput',0); |
|
|
52 |
M = cell2mat(cycle')'; |
|
|
53 |
|
|
|
54 |
% re-aligning beats |
|
|
55 |
i = 1; |
|
|
56 |
while i<=size(M,2) |
|
|
57 |
lag = finddelay(mean(M'),M(:,i)); % finds lag on the beat |
|
|
58 |
if abs(lag) > T_LENGTH % only allows 20% shift |
|
|
59 |
M(:,i) = []; % otherwise ignore beat |
|
|
60 |
continue |
|
|
61 |
end |
|
|
62 |
if size(M,2)>2 && lag < 0 |
|
|
63 |
M(end-abs(lag):end,i) = 0; |
|
|
64 |
elseif size(M,2)>2 |
|
|
65 |
M(1:lag,i) = 0; |
|
|
66 |
end |
|
|
67 |
M(:,i)=circshift(M(:,i),[-lag,1]); |
|
|
68 |
i = i+1; |
|
|
69 |
end |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
end |