Download this file

73 lines (67 with data), 2.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [M,RES] = stackbeats(signal,qrs,T_LENGTH,NB_BINS)
% Stack and wraps beats onto a matrix M
% RES = time reference to resample from bins to time
%
% --
% ECG classification from single-lead segments using Deep Convolutional Neural
% Networks and Feature-Based Approaches - December 2017
%
% Released under the GNU General Public License
%
% Copyright (C) 2017 Fernando Andreotti, Oliver Carr
% University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017
% fernando.andreotti@eng.ox.ac.uk
%
%
% For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017
%
% Referencing this work
%
% Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017).
% Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect
% Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France).
%
% Last updated : December 2017
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Parameter
if size(signal,1) < size(signal,2), signal = signal'; end
phase = FECGx_kf_PhaseCalc(qrs,length(signal));
ini_cycles = find(phase(2:end)<0&phase(1:end-1)>0)+1; % start of cycles
cycle_len = diff(ini_cycles); % distance between cycles
end_cycles = ini_cycles(1:end-1)+cycle_len-1; % start of cycles
meanPhase = linspace(-pi,pi,NB_BINS);
RES = 2.*round((median(cycle_len)+1)/2)-1;
% stacking cycles
cycle = arrayfun(@(x) interp1(phase(ini_cycles(x):end_cycles(x)),...
signal(ini_cycles(x):end_cycles(x)),meanPhase,'spline'),...
1:length(ini_cycles)-1,'UniformOutput',0);
M = cell2mat(cycle')';
% re-aligning beats
i = 1;
while i<=size(M,2)
lag = finddelay(mean(M'),M(:,i)); % finds lag on the beat
if abs(lag) > T_LENGTH % only allows 20% shift
M(:,i) = []; % otherwise ignore beat
continue
end
if size(M,2)>2 && lag < 0
M(end-abs(lag):end,i) = 0;
elseif size(M,2)>2
M(1:lag,i) = 0;
end
M(:,i)=circshift(M(:,i),[-lag,1]);
i = i+1;
end
end