Switch to unified view

a b/code/Novel_CNN/Novel_CNN.py
1
import tensorflow as tf
2
import numpy as np
3
import os
4
from tensorflow import keras
5
from tensorflow.keras import layers,Sequential
6
from tensorflow.keras.models import *
7
from tensorflow.keras.layers import *
8
from tensorflow.keras.optimizers import *
9
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
10
from tensorflow.keras import backend as keras
11
12
def Novel_CNN(input_size = ( 1024, 1)):
13
    inputs = Input(input_size)
14
    conv1 = layers.Conv1D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
15
    conv1 = layers.Conv1D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
16
    pool1 = AveragePooling1D(pool_size= 2)(conv1)
17
18
    conv2 = layers.Conv1D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
19
    conv2 = layers.Conv1D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
20
    pool2 = AveragePooling1D(pool_size= 2)(conv2)
21
22
    conv3 = layers.Conv1D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
23
    conv3 = layers.Conv1D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
24
    pool3 = AveragePooling1D(pool_size= 2)(conv3) #9
25
26
    conv4 = layers.Conv1D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
27
    conv4 = layers.Conv1D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
28
    drop4 = layers.Dropout(0.5)(conv4)
29
    pool4 = AveragePooling1D(pool_size = 2)(drop4)  #13
30
31
    conv5 = layers.Conv1D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)  #14
32
    conv5 = layers.Conv1D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
33
    drop5 = layers.Dropout(0.5)(conv5)
34
    ###
35
    pool5 = AveragePooling1D(pool_size = 2)(drop5)
36
37
    conv6 = layers.Conv1D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool5)  #18
38
    conv6 = layers.Conv1D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
39
    drop6 = layers.Dropout(0.5)(conv6)
40
41
    pool6 = AveragePooling1D(pool_size = 2)(drop6)
42
43
    conv7 = layers.Conv1D(2048, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool6)  #22
44
    conv7 = layers.Conv1D(2048, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
45
    drop7 = layers.Dropout(0.5)(conv7)
46
    #######
47
    flatten1 = layers.Flatten()(drop7)
48
    #output1 = layers.Dense(2048)(flatten1)
49
    output1 = layers.Dense(1024)(flatten1)
50
    model = Model(inputs = inputs, outputs = output1)
51
52
    model.summary()
53
    return model
54