[8adc28]: / code / Novel_CNN / Novel_CNN.py

Download this file

55 lines (44 with data), 2.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
import numpy as np
import os
from tensorflow import keras
from tensorflow.keras import layers,Sequential
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras import backend as keras
def Novel_CNN(input_size = ( 1024, 1)):
inputs = Input(input_size)
conv1 = layers.Conv1D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
conv1 = layers.Conv1D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
pool1 = AveragePooling1D(pool_size= 2)(conv1)
conv2 = layers.Conv1D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = layers.Conv1D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
pool2 = AveragePooling1D(pool_size= 2)(conv2)
conv3 = layers.Conv1D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
conv3 = layers.Conv1D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
pool3 = AveragePooling1D(pool_size= 2)(conv3) #9
conv4 = layers.Conv1D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = layers.Conv1D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
drop4 = layers.Dropout(0.5)(conv4)
pool4 = AveragePooling1D(pool_size = 2)(drop4) #13
conv5 = layers.Conv1D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) #14
conv5 = layers.Conv1D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
drop5 = layers.Dropout(0.5)(conv5)
###
pool5 = AveragePooling1D(pool_size = 2)(drop5)
conv6 = layers.Conv1D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool5) #18
conv6 = layers.Conv1D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
drop6 = layers.Dropout(0.5)(conv6)
pool6 = AveragePooling1D(pool_size = 2)(drop6)
conv7 = layers.Conv1D(2048, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool6) #22
conv7 = layers.Conv1D(2048, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
drop7 = layers.Dropout(0.5)(conv7)
#######
flatten1 = layers.Flatten()(drop7)
#output1 = layers.Dense(2048)(flatten1)
output1 = layers.Dense(1024)(flatten1)
model = Model(inputs = inputs, outputs = output1)
model.summary()
return model