--- a +++ b/generating_data.ipynb @@ -0,0 +1,89 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "04c762a0-d289-4e23-b0f3-3ea6b3aa2e32", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "# Patients table\n", + "np.random.seed(0)\n", + "num_rows = 10000\n", + "patients = pd.DataFrame({\n", + " 'patient_id': np.arange(1, num_rows + 1),\n", + " 'age': np.random.randint(18, 85, num_rows),\n", + " 'gender': np.random.choice(['Male', 'Female'], num_rows),\n", + " 'admission_date': pd.date_range('2020-01-01', periods=num_rows),\n", + " 'discharge_date': pd.date_range('2020-01-15', periods=num_rows)\n", + "})\n", + "\n", + "# Diagnoses table\n", + "diagnoses = pd.DataFrame({\n", + " 'diagnosis_id': np.arange(1, num_rows + 1),\n", + " 'patient_id': patients['patient_id'],\n", + " 'icd_code': np.random.choice(['A00-B99', 'C00-D49', 'D50-D89', 'E00-E89', 'F00-F99'], num_rows),\n", + " 'diagnosis_date': [pd.date_range(row['admission_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['admission_date'], row['discharge_date']))) - 1] for index, row in patients.iterrows()]\n", + "})\n", + "\n", + "# Medications table\n", + "medications = pd.DataFrame({\n", + " 'medication_id': np.arange(1, num_rows + 1),\n", + " 'patient_id': patients['patient_id'],\n", + " 'medication_name': np.random.choice(['Medication A', 'Medication B', 'Medication C', 'Medication D', 'Medication E'], num_rows),\n", + " 'start_date': [pd.date_range(row['admission_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['admission_date'], row['discharge_date']))) - 1] for index, row in patients.iterrows()]\n", + "})\n", + "\n", + "medications = medications.merge(patients[['patient_id', 'admission_date', 'discharge_date']], on='patient_id')\n", + "\n", + "medications['end_date'] = [pd.date_range(row['start_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['start_date'], row['discharge_date']))) - 1] if len(pd.date_range(row['start_date'], row['discharge_date'])) > 1 else row['discharge_date'] for index, row in medications.iterrows()]\n", + "\n", + "# Lab results table\n", + "lab_results = pd.DataFrame({\n", + " 'lab_result_id': np.arange(1, num_rows + 1),\n", + " 'patient_id': patients['patient_id'],\n", + " 'lab_test': np.random.choice(['Lab Test A', 'Lab Test B', 'Lab Test C', 'Lab Test D', 'Lab Test E'], num_rows),\n", + " 'result_value': np.random.uniform(100, 300, num_rows),\n", + " 'result_date': [pd.date_range(row['admission_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['admission_date'], row['discharge_date']))) - 1] for index, row in patients.iterrows()]\n", + "})\n", + "\n", + "# Readmission risk table\n", + "readmission_risk = pd.DataFrame({\n", + " 'patient_id': patients['patient_id'],\n", + " 'readmission_risk': np.random.choice([0, 1], num_rows)\n", + "})\n", + "\n", + "# Save data to CSV files\n", + "patients.to_csv('patients2.csv', index=False)\n", + "diagnoses.to_csv('diagnoses2.csv', index=False)\n", + "medications.to_csv('medications2.csv', index=False)\n", + "lab_results.to_csv('lab_results2.csv', index=False)\n", + "readmission_risk.to_csv('readmission_risk2.csv', index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}