90 lines (89 with data), 3.9 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "04c762a0-d289-4e23-b0f3-3ea6b3aa2e32",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"# Patients table\n",
"np.random.seed(0)\n",
"num_rows = 10000\n",
"patients = pd.DataFrame({\n",
" 'patient_id': np.arange(1, num_rows + 1),\n",
" 'age': np.random.randint(18, 85, num_rows),\n",
" 'gender': np.random.choice(['Male', 'Female'], num_rows),\n",
" 'admission_date': pd.date_range('2020-01-01', periods=num_rows),\n",
" 'discharge_date': pd.date_range('2020-01-15', periods=num_rows)\n",
"})\n",
"\n",
"# Diagnoses table\n",
"diagnoses = pd.DataFrame({\n",
" 'diagnosis_id': np.arange(1, num_rows + 1),\n",
" 'patient_id': patients['patient_id'],\n",
" 'icd_code': np.random.choice(['A00-B99', 'C00-D49', 'D50-D89', 'E00-E89', 'F00-F99'], num_rows),\n",
" 'diagnosis_date': [pd.date_range(row['admission_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['admission_date'], row['discharge_date']))) - 1] for index, row in patients.iterrows()]\n",
"})\n",
"\n",
"# Medications table\n",
"medications = pd.DataFrame({\n",
" 'medication_id': np.arange(1, num_rows + 1),\n",
" 'patient_id': patients['patient_id'],\n",
" 'medication_name': np.random.choice(['Medication A', 'Medication B', 'Medication C', 'Medication D', 'Medication E'], num_rows),\n",
" 'start_date': [pd.date_range(row['admission_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['admission_date'], row['discharge_date']))) - 1] for index, row in patients.iterrows()]\n",
"})\n",
"\n",
"medications = medications.merge(patients[['patient_id', 'admission_date', 'discharge_date']], on='patient_id')\n",
"\n",
"medications['end_date'] = [pd.date_range(row['start_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['start_date'], row['discharge_date']))) - 1] if len(pd.date_range(row['start_date'], row['discharge_date'])) > 1 else row['discharge_date'] for index, row in medications.iterrows()]\n",
"\n",
"# Lab results table\n",
"lab_results = pd.DataFrame({\n",
" 'lab_result_id': np.arange(1, num_rows + 1),\n",
" 'patient_id': patients['patient_id'],\n",
" 'lab_test': np.random.choice(['Lab Test A', 'Lab Test B', 'Lab Test C', 'Lab Test D', 'Lab Test E'], num_rows),\n",
" 'result_value': np.random.uniform(100, 300, num_rows),\n",
" 'result_date': [pd.date_range(row['admission_date'], row['discharge_date'])[np.random.randint(0, len(pd.date_range(row['admission_date'], row['discharge_date']))) - 1] for index, row in patients.iterrows()]\n",
"})\n",
"\n",
"# Readmission risk table\n",
"readmission_risk = pd.DataFrame({\n",
" 'patient_id': patients['patient_id'],\n",
" 'readmission_risk': np.random.choice([0, 1], num_rows)\n",
"})\n",
"\n",
"# Save data to CSV files\n",
"patients.to_csv('patients2.csv', index=False)\n",
"diagnoses.to_csv('diagnoses2.csv', index=False)\n",
"medications.to_csv('medications2.csv', index=False)\n",
"lab_results.to_csv('lab_results2.csv', index=False)\n",
"readmission_risk.to_csv('readmission_risk2.csv', index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}