--- a +++ b/conf/experiment/propensity_scale_sensitivity.yaml @@ -0,0 +1,64 @@ +# Configuration file for the propensity sensitivity experiment +# Also compares the unbalancedness of the treatment assignment +# ============================================================================== + +# Defaults +defaults: + - _self_ + + # Simulation settings + - /simulator: ty_simulator + + # Model parametrization + - /models@EconML_CausalForestDML: EconML_CausalForestDML + - /models@EconML_DML: EconML_DML + - /models@EconML_DMLOrthoForest: EconML_DMLOrthoForest + - /models@EconML_DRLearner: EconML_DRLearner + - /models@EconML_DROrthoForest: EconML_DROrthoForest + - /models@EconML_ForestDRLearner: EconML_ForestDRLearner + - /models@EconML_LinearDML: EconML_LinearDML + - /models@EconML_LinearDRLearner: EconML_LinearDRLearner + - /models@EconML_SparseLinearDML: EconML_SparseLinearDML + - /models@EconML_SparseLinearDRLearner: EconML_SparseLinearDRLearner #EconML_SparseLinearDRLearner + - /models@EconML_SLearner_Lasso: EconML_SLearner_Lasso + - /models@EconML_TLearner_Lasso: EconML_TLearner_Lasso + - /models@EconML_XLearner_Lasso: EconML_XLearner_Lasso + + - /models@Torch_SLearner: Torch_SLearner + - /models@Torch_TLearner: Torch_TLearner + - /models@Torch_XLearner: Torch_XLearner + - /models@Torch_DRLearner: Torch_DRLearner + - /models@Torch_RLearner: Torch_RLearner + - /models@Torch_TARNet: Torch_TARNet + - /models@Torch_DragonNet: Torch_DragonNet + - /models@Torch_DragonNet_2: Torch_DragonNet_2 + - /models@Torch_DragonNet_4: Torch_DragonNet_4 + - /models@Torch_ULearner: Torch_ULearner + - /models@Torch_RALearner: Torch_RALearner + - /models@Torch_PWLearner: Torch_PWLearner + - /models@Torch_FlexTENet: Torch_FlexTENet + - /models@Torch_CRFNet_0_01: Torch_CRFNet_0_01 + - /models@Torch_CRFNet_0_001: Torch_CRFNet_0_001 + - /models@Torch_CRFNet_0_0001: Torch_CRFNet_0_0001 + - /models@Torch_ActionNet: Torch_ActionNet + + - /models@DiffPOLearner: DiffPOLearner + + +# EXPERIMENT AND DATA +# ============================================================================== +experiment_name: "propensity_scale_sensitivity" +# ============================================================================== + +# EXPERIMENTAL KNOB +# ============================================================================== +# Cohort sizes to be tested +propensity_scales: [0, 0.25, 0.5, 1, 2, 4, 8, 16] #[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] #[0, 0.5, 1.0] #, 1.0] +unbalancedness_exps: [0] #, 0.2] # If too unbalanced, the model may give an error because of there being too few instances for a certain class +nonlinearity_scales: [0] #,0.4,0.8] +propensity_types: ["none_prog", "none_tre", "none_pred", "rct_none", "none_pred_overlap"] #, "none_prog_overlap"] +propensity_alpha: 1 +n_samples: 100 #Irrelevant here, only for toy +# ============================================================================== + +