[6ac965]: / conf / experiment / propensity_scale_sensitivity.yaml

Download this file

65 lines (54 with data), 2.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Configuration file for the propensity sensitivity experiment
# Also compares the unbalancedness of the treatment assignment
# ==============================================================================
# Defaults
defaults:
- _self_
# Simulation settings
- /simulator: ty_simulator
# Model parametrization
- /models@EconML_CausalForestDML: EconML_CausalForestDML
- /models@EconML_DML: EconML_DML
- /models@EconML_DMLOrthoForest: EconML_DMLOrthoForest
- /models@EconML_DRLearner: EconML_DRLearner
- /models@EconML_DROrthoForest: EconML_DROrthoForest
- /models@EconML_ForestDRLearner: EconML_ForestDRLearner
- /models@EconML_LinearDML: EconML_LinearDML
- /models@EconML_LinearDRLearner: EconML_LinearDRLearner
- /models@EconML_SparseLinearDML: EconML_SparseLinearDML
- /models@EconML_SparseLinearDRLearner: EconML_SparseLinearDRLearner #EconML_SparseLinearDRLearner
- /models@EconML_SLearner_Lasso: EconML_SLearner_Lasso
- /models@EconML_TLearner_Lasso: EconML_TLearner_Lasso
- /models@EconML_XLearner_Lasso: EconML_XLearner_Lasso
- /models@Torch_SLearner: Torch_SLearner
- /models@Torch_TLearner: Torch_TLearner
- /models@Torch_XLearner: Torch_XLearner
- /models@Torch_DRLearner: Torch_DRLearner
- /models@Torch_RLearner: Torch_RLearner
- /models@Torch_TARNet: Torch_TARNet
- /models@Torch_DragonNet: Torch_DragonNet
- /models@Torch_DragonNet_2: Torch_DragonNet_2
- /models@Torch_DragonNet_4: Torch_DragonNet_4
- /models@Torch_ULearner: Torch_ULearner
- /models@Torch_RALearner: Torch_RALearner
- /models@Torch_PWLearner: Torch_PWLearner
- /models@Torch_FlexTENet: Torch_FlexTENet
- /models@Torch_CRFNet_0_01: Torch_CRFNet_0_01
- /models@Torch_CRFNet_0_001: Torch_CRFNet_0_001
- /models@Torch_CRFNet_0_0001: Torch_CRFNet_0_0001
- /models@Torch_ActionNet: Torch_ActionNet
- /models@DiffPOLearner: DiffPOLearner
# EXPERIMENT AND DATA
# ==============================================================================
experiment_name: "propensity_scale_sensitivity"
# ==============================================================================
# EXPERIMENTAL KNOB
# ==============================================================================
# Cohort sizes to be tested
propensity_scales: [0, 0.25, 0.5, 1, 2, 4, 8, 16] #[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] #[0, 0.5, 1.0] #, 1.0]
unbalancedness_exps: [0] #, 0.2] # If too unbalanced, the model may give an error because of there being too few instances for a certain class
nonlinearity_scales: [0] #,0.4,0.8]
propensity_types: ["none_prog", "none_tre", "none_pred", "rct_none", "none_pred_overlap"] #, "none_prog_overlap"]
propensity_alpha: 1
n_samples: 100 #Irrelevant here, only for toy
# ==============================================================================