Skip to contents
#devtools::install_github("GenomeNet/deepG")
library(deepG)
library(magrittr)

Introduction

The goal of the deepG package is to speed up the development of bioinformatical tools for sequence classification, homology detection and other bioinformatical tasks. The package offers several functions for

  • Data (pre-) processing
  • Deep learning architectures
  • Model training
  • Model evaluation
  • Visualizing training progress

Create dummy data

We create two simple dummy training and validation data sets. Both consist of random ACGT sequences but the first category has a probability of 40% each for drawing G or C and the second has equal probability for each nucleotide (first category has around 80% GC content and second one around 50%).

set.seed(123)
vocabulary <- c("A", "C", "G", "T")

data_type <- c("train_1", "train_2", "val_1", "val_2")

for (i in 1:length(data_type)) {
  
  temp_file <- tempfile()
  assign(paste0(data_type[i], "_dir"), temp_file)
  dir.create(temp_file)
  
  if (i %% 2 == 1) {
    header <- "high_gc"
    prob <- c(0.1, 0.4, 0.4, 0.1)
  } else {
    header <- "equal_dist"
    prob <- rep(0.25, 4)
  }
  
  fasta_name_start <- paste0(header, "_", data_type[i], "file")
  
  create_dummy_data(file_path = temp_file,
                    num_files = 1,
                    seq_length = 10000, 
                    num_seq = 1,
                    header = header,
                    prob = prob,
                    fasta_name_start = fasta_name_start,
                    vocabulary = vocabulary)
  
}

Training

We can now train a model that can differentiate between the two categories. First, we can create our network architecture. We take an input size of 50 nucleotides. The model has one lstm layer with 16 cells and two dense layers with 8 and 2 neurons.

maxlen <- 50
model <- create_model_lstm_cnn(maxlen = maxlen,
                               layer_lstm = 16,
                               layer_dense = c(8, 2))
## Model: "model"
## _________________________________________________________________
##  Layer (type)                Output Shape              Param #   
## =================================================================
##  input_1 (InputLayer)        [(None, 50, 4)]           0         
##                                                                  
##  lstm (LSTM)                 (None, 16)                1344      
##                                                                  
##  dense (Dense)               (None, 8)                 136       
##                                                                  
##  dense_1 (Dense)             (None, 2)                 18        
##                                                                  
## =================================================================
## Total params: 1498 (5.85 KB)
## Trainable params: 1498 (5.85 KB)
## Non-trainable params: 0 (0.00 Byte)
## _________________________________________________________________

Next we can train the model using the train_model function. Function will internally build a data generator for training.

hist <- train_model(model,
                    train_type = "label_folder",
                    run_name = "gc_model_1",
                    path = c(train_1_dir, train_2_dir),
                    path_val = c(val_1_dir, val_2_dir),
                    epochs = 4,
                    steps_per_epoch = 25, # one epoch = 25 batches
                    batch_size = 64,
                    step = 50, # take a sample every 50 nt
                    vocabulary_label = c("high_gc", "equal_dist"))
## Epoch 1/4
##  1/25 [>.............................] - ETA: 21s - loss: 0.7058 - acc: 0.5938 4/25 [===>..........................] - ETA: 0s - loss: 0.7028 - acc: 0.5430  7/25 [=======>......................] - ETA: 0s - loss: 0.7013 - acc: 0.533510/25 [===========>..................] - ETA: 0s - loss: 0.6976 - acc: 0.539114/25 [===============>..............] - ETA: 0s - loss: 0.6935 - acc: 0.559217/25 [===================>..........] - ETA: 0s - loss: 0.6900 - acc: 0.577221/25 [========================>.....] - ETA: 0s - loss: 0.6860 - acc: 0.607124/25 [===========================>..] - ETA: 0s - loss: 0.6821 - acc: 0.624325/25 [==============================] - 2s 31ms/step - loss: 0.6813 - acc: 0.6256 - val_loss: 0.6511 - val_acc: 0.7563 - lr: 0.0010
## Epoch 2/4
##  1/25 [>.............................] - ETA: 0s - loss: 0.6379 - acc: 0.8281 4/25 [===>..........................] - ETA: 0s - loss: 0.6423 - acc: 0.7617 8/25 [========>.....................] - ETA: 0s - loss: 0.6340 - acc: 0.785212/25 [=============>................] - ETA: 0s - loss: 0.6228 - acc: 0.789116/25 [==================>...........] - ETA: 0s - loss: 0.6086 - acc: 0.805720/25 [=======================>......] - ETA: 0s - loss: 0.5892 - acc: 0.825824/25 [===========================>..] - ETA: 0s - loss: 0.5650 - acc: 0.850925/25 [==============================] - 1s 21ms/step - loss: 0.5590 - acc: 0.8556 - val_loss: 0.3910 - val_acc: 0.9719 - lr: 0.0010
## Epoch 3/4
##  1/25 [>.............................] - ETA: 0s - loss: 0.3548 - acc: 1.0000 4/25 [===>..........................] - ETA: 0s - loss: 0.3463 - acc: 0.9883 8/25 [========>.....................] - ETA: 0s - loss: 0.3230 - acc: 0.976611/25 [============>.................] - ETA: 0s - loss: 0.3052 - acc: 0.975915/25 [=================>............] - ETA: 0s - loss: 0.2893 - acc: 0.970817/25 [===================>..........] - ETA: 0s - loss: 0.2792 - acc: 0.970621/25 [========================>.....] - ETA: 0s - loss: 0.2665 - acc: 0.969524/25 [===========================>..] - ETA: 0s - loss: 0.2547 - acc: 0.971425/25 [==============================] - 1s 21ms/step - loss: 0.2533 - acc: 0.9706 - val_loss: 0.1765 - val_acc: 0.9719 - lr: 0.0010
## Epoch 4/4
##  1/25 [>.............................] - ETA: 0s - loss: 0.1369 - acc: 1.0000 4/25 [===>..........................] - ETA: 0s - loss: 0.1456 - acc: 0.9922 7/25 [=======>......................] - ETA: 0s - loss: 0.1494 - acc: 0.986610/25 [===========>..................] - ETA: 0s - loss: 0.1425 - acc: 0.987514/25 [===============>..............] - ETA: 0s - loss: 0.1376 - acc: 0.986617/25 [===================>..........] - ETA: 0s - loss: 0.1315 - acc: 0.987121/25 [========================>.....] - ETA: 0s - loss: 0.1259 - acc: 0.986625/25 [==============================] - ETA: 0s - loss: 0.1225 - acc: 0.985025/25 [==============================] - 1s 21ms/step - loss: 0.1225 - acc: 0.9850 - val_loss: 0.0992 - val_acc: 0.9812 - lr: 0.0010
## Training done.
plot(hist)

Evaluation

We can now evaluate the trained model on all the validation data

eval <- evaluate_model(path_input = c(val_1_dir, val_2_dir),
                       model = model,
                       batch_size = 100,
                       step = 25, # take a sample every 25 nt 
                       vocabulary_label = list(c("high_gc", "equal_dist")),
                       mode = "label_folder",
                       evaluate_all_files = TRUE,
                       verbose = FALSE,
                       auc = TRUE,
                       auprc = TRUE)
## Evaluate 399 samples for class high_gc.
## Evaluate 399 samples for class equal_dist.
eval
## [[1]]
## [[1]]$confusion_matrix
##             Truth
## Prediction   high_gc equal_dist
##   high_gc        383          5
##   equal_dist      16        394
## 
## [[1]]$accuracy
## [1] 0.9736842
## 
## [[1]]$categorical_crossentropy_loss
## [1] 0.1157783
## 
## [[1]]$AUC
## [1] 0.9968593
## 
## [[1]]$AUPRC
## [1] 0.9968503

We can check where our model made mistakes for the sequence with high GC content.

high_gc_file <- microseq::readFasta(list.files(val_1_dir, full.names = TRUE)[1])
high_gc_seq <- high_gc_file$Sequence

pred_high_gc <- predict_model(model = model, 
                              sequence = high_gc_seq,
                              filename = NULL, 
                              step = 25,
                              batch_size = 512,
                              verbose = TRUE,
                              return_states = TRUE,
                              mode = "label")
## layer_name not specified. Using layer dense_1
## Computing output for model at layer dense_1 
## Model: "model_1"
## ________________________________________________________________________________
##  Layer (type)                       Output Shape                    Param #     
## ================================================================================
##  input_1 (InputLayer)               [(None, 50, 4)]                 0           
##  lstm (LSTM)                        (None, 16)                      1344        
##  dense (Dense)                      (None, 8)                       136         
##  dense_1 (Dense)                    (None, 2)                       18          
## ================================================================================
## Total params: 1498 (5.85 KB)
## Trainable params: 1498 (5.85 KB)
## Non-trainable params: 0 (0.00 Byte)
## ________________________________________________________________________________
pred_df <- cbind(pred_high_gc$states, pred_high_gc$sample_end_position) %>% 
  as.data.frame()
names(pred_df) <- c("high_gc_conf", "equal_dist_conf", "sample_end_position")
head(pred_df)
##   high_gc_conf equal_dist_conf sample_end_position
## 1    0.9330443      0.06695572                  50
## 2    0.9602452      0.03975480                  75
## 3    0.9642879      0.03571207                 100
## 4    0.9596730      0.04032708                 125
## 5    0.9617251      0.03827484                 150
## 6    0.9666333      0.03336672                 175
wrong_pred <- pred_df %>% dplyr::filter(high_gc_conf < 0.5)
wrong_pred
##    high_gc_conf equal_dist_conf sample_end_position
## 1    0.13769490       0.8623052                 675
## 2    0.08829107       0.9117089                 800
## 3    0.15268661       0.8473134                1150
## 4    0.10348237       0.8965176                1475
## 5    0.10325063       0.8967494                1950
## 6    0.08819685       0.9118031                2700
## 7    0.08648270       0.9135173                3000
## 8    0.08025692       0.9197431                3700
## 9    0.10362279       0.8963772                4675
## 10   0.21332431       0.7866758                7550
## 11   0.14129026       0.8587097                7875
## 12   0.37184438       0.6281556                8200
## 13   0.07818010       0.9218199                8225
## 14   0.24804193       0.7519581                8425
## 15   0.30556497       0.6944351                9900
## 16   0.10370088       0.8962991                9925
if (nrow(wrong_pred) == 0) {
  print("All predictions for high GC content class correct")
} else {
  
  # extract samples where model was wrong
  wrong_pred_seq <- vector("character", nrow(wrong_pred))
  for (i in 1:length(wrong_pred_seq)) {
    sample_end <- wrong_pred$sample_end_position[i]
    sample_start <- sample_end - maxlen + 1
    wrong_pred_seq[i] <- substr(high_gc_seq, sample_start, sample_end)
  }
  
  wrong_pred_seq
}
##  [1] "CTTAGAGACCTCGCCGCCACCGCCCGAGGTTCCGCTCCGGCGTCCCGCGG"
##  [2] "CCCACTTCGTGTCTATGCCGGACACGCCTCGATAGGCGCAGGCGATGGGC"
##  [3] "ACAGGAGAGACCCTCGGTTGCCGGCGACGCCGTGTCGTTGGTAGGCCCAC"
##  [4] "GATAGCTCCACACCCACCTCAGCGTCCCGGGCCGCCGGCGTTCCGCCTGC"
##  [5] "GCCCAACAAGGACGGTGAACTCCCCCGGGTACGGAAGAGGGTATGGCCGC"
##  [6] "AGGAGTCCTCCTAGAGCTCATGGGTTGAGACGTGCCTCGACGCCCGACCT"
##  [7] "CCCATTAGACCGTCCTGGCGGACACCCGTACGGGTGAGACCCTCCGGGTC"
##  [8] "TGCTTATCATGGCCGCCCTGATGACGTGTCAGGGGGAGGACTGAGCGGGG"
##  [9] "ATCCCGCATTCGCCGACGTCTCCACAGGAGGATCAGCGGGTCCGGGGCGA"
## [10] "TTTGCGCCCCCTAAGGCACAGCCGCGACCCCAGGTTGGGAACCGCCGAAC"
## [11] "CTACGGAACGTGGCTCCGAGCATCGGCGCATCGGCATGTGTCTGCCGGCG"
## [12] "GTCGGGCGGAGCGCCACCACCGAGGGGCGGGCCCTTCAATTCTATAAGCG"
## [13] "GGCGGGCCCTTCAATTCTATAAGCGACGCCGCCCTTGTCTGACGCTGGGC"
## [14] "CACCCTATGTAGCCCCCTGCCTCGCCGGCCAGCCTGGGCTGATCGGGGCC"
## [15] "TGGCCGTCGCGCTCCGGAGCCGTCACACCGGCGTACCTGTTATAAAGTCG"
## [16] "CACCGGCGTACCTGTTATAAAGTCGCCCGCGCTCCCCCGGGCGCACCACG"

We can check the nucleotide distribution of those sequences

l <- list()
for (i in 1:length(wrong_pred_seq)) {
  l[[i]] <- stringr::str_split(wrong_pred_seq[i], "") %>% table() %>% prop.table() %>% t() %>% as.matrix()
}
dist_matrix <- do.call(rbind, l)
dist_matrix
##          A    C    G    T
##  [1,] 0.10 0.46 0.30 0.14
##  [2,] 0.16 0.34 0.32 0.18
##  [3,] 0.16 0.32 0.36 0.16
##  [4,] 0.12 0.48 0.26 0.14
##  [5,] 0.24 0.30 0.36 0.10
##  [6,] 0.18 0.32 0.30 0.20
##  [7,] 0.16 0.38 0.30 0.16
##  [8,] 0.16 0.22 0.42 0.20
##  [9,] 0.18 0.34 0.34 0.14
## [10,] 0.20 0.40 0.28 0.12
## [11,] 0.14 0.32 0.36 0.18
## [12,] 0.18 0.32 0.36 0.14
## [13,] 0.14 0.34 0.30 0.22
## [14,] 0.10 0.44 0.30 0.16
## [15,] 0.16 0.34 0.30 0.20
## [16,] 0.16 0.44 0.26 0.14
df <- data.frame(distribution = as.vector(dist_matrix),
                 nt = factor(rep(vocabulary, each = nrow(dist_matrix))),
                 sample_id = rep(1:nrow(dist_matrix), 4))

ggplot(df, aes(fill=nt, y=distribution, x=nt)) + 
    geom_bar(position="dodge", stat="identity")  + facet_wrap(~sample_id)

Finally, we may want to aggregate all predictions, we made for the sequence. We can do this using the summarize_states function. The function returns the mean confidence, the maximum prediction and the vote percentages (percentage of predictions per class).

label_names <- c("high_gc", "equal_dist")
pred_summary <- summarize_states(label_names = label_names, df = pred_df[, 1:2])
print(pred_summary)
##    file_name mean_conf_high_gc mean_conf_equal_dist max_conf_high_gc
##       <lgcl>             <num>                <num>            <num>
## 1:        NA         0.9148641           0.08513589        0.9714182
##    max_conf_equal_dist vote_perc_high_gc vote_perc_equal_dist mean_prediction
##                  <num>             <num>                <num>          <char>
## 1:           0.9218199         0.9598997           0.04010025         high_gc
##    max_prediction vote_prediction num_prediction
##            <char>          <char>          <int>
## 1:        high_gc         high_gc            399