[1c0e03]: / docs / articles / using_tb.html

Download this file

279 lines (245 with data), 26.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="deepG">
<title>Using Tensorboard • deepG</title>
<!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png">
<link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png">
<link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png">
<link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png">
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.11/clipboard.min.js" integrity="sha512-7O5pXpc0oCRrxk8RUfDYFgn0nO1t+jLuIOQdOMRp4APB7uZ4vSjspzp5y6YDtDs4VzUSTbWzBFZ/LKJhnyFOKw==" crossorigin="anonymous" referrerpolicy="no-referrer"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Using Tensorboard">
<meta property="og:description" content="deepG">
<meta property="og:image" content="https://genomenet.github.io/deepG/logo.png">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-light navbar-expand-lg bg-light" data-bs-theme="light"><div class="container">
<a class="navbar-brand me-2" href="../index.html">deepG</a>
<small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">0.3.0</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="nav-item">
<a class="nav-link" href="../reference/index.html">
<span class="fa fa fa fa-file-alt"></span>
Reference
</a>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-notebooks">Notebooks</a>
<div class="dropdown-menu" aria-labelledby="dropdown-notebooks">
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/175jIdXcDcgPUvaBo2rH2Lupbpjnp5O7G?usp=sharing">deepG tutorial</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1Eolc0koMNM1zkuO4XyVM58ImeF1BpRiH?usp=sharing">Read-length level: Human contamination</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1yiXSwFafXpMLHaov9iBTQLIDZ6bK1zYX?usp=sharing">Locus level: CRISPR detection</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1G7bOFEX87cZNrM2tdRtTdkrZn5fM__g0?usp=sharing">Gene level: 16S rRNA detection</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1BCggL-tfQF136YeJ8cKKi-zoBEDMgkNh?usp=sharing">Genome level: Bacterial morphology (Sporulation)</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/10xpRzGd3JeBAbqQYSCxzQUMctt01sx9D?usp=sharing">Full metagenome level: Colorectal cancer prediction</a>
<a class="external-link dropdown-item" href="https://colab.research.google.com/drive/1kyYK7IU7GSfdpDzO_a8U3_qD4i3zTu6w?usp=sharing">BERT with deepG</a>
</div>
</li>
<li class="active nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-tutorials">Tutorials</a>
<div class="dropdown-menu" aria-labelledby="dropdown-tutorials">
<a class="dropdown-item" href="../articles/getting_started.html">Getting Started</a>
<a class="dropdown-item" href="../articles/training_types.html">Training types</a>
<a class="dropdown-item" href="../articles/data_generator.html">Data generator</a>
<a class="dropdown-item" href="../articles/using_tb.html">Using tensorboard</a>
<a class="dropdown-item" href="../articles/integrated_gradient.html">Integrated Gradient</a>
</div>
</li>
</ul>
<form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
</form>
<ul class="navbar-nav">
<li class="nav-item">
<a class="external-link nav-link" href="https://github.com/GenomeNet/deepG/" aria-label="github">
<span class="fab fa fab fa-github fa-lg"></span>
</a>
</li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="../logo.png" class="logo" alt=""><h1>Using Tensorboard</h1>
<small class="dont-index">Source: <a href="https://github.com/GenomeNet/deepG/blob/HEAD/vignettes/using_tb.Rmd" class="external-link"><code>vignettes/using_tb.Rmd</code></a></small>
<div class="d-none name"><code>using_tb.Rmd</code></div>
</div>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># devtools::install_github("GenomeNet/deepG")</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/GenomeNet/deepG" class="external-link">deepG</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://magrittr.tidyverse.org" class="external-link">magrittr</a></span><span class="op">)</span></span></code></pre></div>
<style type="text/css">
mark.in {
background-color: CornflowerBlue;
}
mark.out {
background-color: IndianRed;
}
</style>
<p>Tensorflow offers the
<a href="https://www.tensorflow.org/tensorboard" class="external-link">Tensorboard</a>
application to visualize the training process of our networks. DeepG
expands on some of the default Tensorboard options and implements some
custom settings. We train again a model that can differentiate sequences
based on the GC content, as described in the
<a href="getting_started.html">Getting started tutorial</a>.</p>
<p>We start by creating our data. To show the difference between
accuracy and balanced accuracy, we create 3 times more data with high GC
content.</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Random.html" class="external-link">set.seed</a></span><span class="op">(</span><span class="fl">123</span><span class="op">)</span></span>
<span><span class="va">vocabulary</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"A"</span>, <span class="st">"C"</span>, <span class="st">"G"</span>, <span class="st">"T"</span><span class="op">)</span></span>
<span></span>
<span><span class="va">data_type</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"train"</span>, <span class="st">"validation"</span><span class="op">)</span></span>
<span></span>
<span><span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="va">temp_file</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/tempfile.html" class="external-link">tempfile</a></span><span class="op">(</span><span class="op">)</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/assign.html" class="external-link">assign</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>, <span class="st">"_dir"</span><span class="op">)</span>, <span class="va">temp_file</span><span class="op">)</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="va">temp_file</span><span class="op">)</span></span>
<span> </span>
<span> <span class="kw">for</span> <span class="op">(</span><span class="va">j</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="fl">6</span><span class="op">)</span> <span class="op">{</span></span>
<span> </span>
<span> <span class="kw">if</span> <span class="op">(</span><span class="va">j</span> <span class="op"><a href="https://rdrr.io/r/base/Arithmetic.html" class="external-link">%%</a></span> <span class="fl">2</span> <span class="op">==</span> <span class="fl">1</span><span class="op">)</span> <span class="op">{</span></span>
<span> <span class="va">header</span> <span class="op">&lt;-</span> <span class="st">"high_gc"</span></span>
<span> <span class="va">prob</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.1</span>, <span class="fl">0.4</span>, <span class="fl">0.4</span>, <span class="fl">0.1</span><span class="op">)</span></span>
<span> <span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
<span> <span class="va">header</span> <span class="op">&lt;-</span> <span class="st">"equal_dist"</span></span>
<span> <span class="va">prob</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fl">0.25</span>, <span class="fl">4</span><span class="op">)</span></span>
<span> <span class="op">}</span></span>
<span> <span class="va">fasta_name_start</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="va">header</span>, <span class="st">"_"</span>, <span class="va">data_type</span><span class="op">[</span><span class="va">i</span><span class="op">]</span><span class="op">)</span></span>
<span> </span>
<span> <span class="fu"><a href="../reference/create_dummy_data.html">create_dummy_data</a></span><span class="op">(</span>file_path <span class="op">=</span> <span class="va">temp_file</span>,</span>
<span> num_files <span class="op">=</span> <span class="fl">2</span>,</span>
<span> seq_length <span class="op">=</span> <span class="fl">100</span>, </span>
<span> num_seq <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/ifelse.html" class="external-link">ifelse</a></span><span class="op">(</span><span class="va">j</span> <span class="op"><a href="https://rdrr.io/r/base/Arithmetic.html" class="external-link">%%</a></span> <span class="fl">2</span> <span class="op">==</span> <span class="fl">1</span>, <span class="fl">6</span>, <span class="fl">2</span><span class="op">)</span>, <span class="co"># create more sequences for high GC content</span></span>
<span> header <span class="op">=</span> <span class="va">header</span>,</span>
<span> prob <span class="op">=</span> <span class="va">prob</span>,</span>
<span> fasta_name_start <span class="op">=</span> <span class="va">fasta_name_start</span>,</span>
<span> vocabulary <span class="op">=</span> <span class="va">vocabulary</span><span class="op">)</span></span>
<span> <span class="op">}</span></span>
<span> </span>
<span><span class="op">}</span></span></code></pre></div>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/list.files.html" class="external-link">list.files</a></span><span class="op">(</span><span class="va">train_dir</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## [1] "equal_dist_train_1.fasta" "equal_dist_train_2.fasta"</span></span>
<span><span class="co">## [3] "high_gc_train_1.fasta" "high_gc_train_2.fasta"</span></span></code></pre>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/list.files.html" class="external-link">list.files</a></span><span class="op">(</span><span class="va">validation_dir</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## [1] "equal_dist_validation_1.fasta" "equal_dist_validation_2.fasta"</span></span>
<span><span class="co">## [3] "high_gc_validation_1.fasta" "high_gc_validation_2.fasta"</span></span></code></pre>
<p>To use tensorboard, we first need to create a folder where we store
our tensorboard logs.</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># create folder for tensorboard logs</span></span>
<span><span class="va">tb_dir</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/tempfile.html" class="external-link">tempfile</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="va">tb_dir</span><span class="op">)</span></span></code></pre></div>
<p>When creating our model, we can add some additional metrics to
observe like AUC, F1 and balanced accuracy.</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">maxlen</span> <span class="op">&lt;-</span> <span class="fl">50</span></span>
<span><span class="va">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/create_model_lstm_cnn.html">create_model_lstm_cnn</a></span><span class="op">(</span>maxlen <span class="op">=</span> <span class="va">maxlen</span>,</span>
<span> filters <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">8</span><span class="op">)</span>,</span>
<span> kernel_size <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">12</span><span class="op">)</span>,</span>
<span> pool_size <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">3</span><span class="op">)</span>,</span>
<span> layer_lstm <span class="op">=</span> <span class="fl">8</span>,</span>
<span> auc_metric <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> f1_metric <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> bal_acc <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> layer_dense <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">4</span>, <span class="fl">2</span><span class="op">)</span>,</span>
<span> model_seed <span class="op">=</span> <span class="fl">3</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Will flatten y_true and y_pred matrices to a single vector for evaluation</span></span>
<span><span class="co">## rather than computing separate F1 scores for each class and taking the mean.</span></span></code></pre>
<pre><code><span><span class="co">## Model: "model"</span></span>
<span><span class="co">## _________________________________________________________________</span></span>
<span><span class="co">## Layer (type) Output Shape Param # </span></span>
<span><span class="co">## =================================================================</span></span>
<span><span class="co">## input_1 (InputLayer) [(None, 50, 4)] 0 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## conv1d (Conv1D) (None, 50, 8) 392 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## max_pooling1d (MaxPooling1 (None, 16, 8) 0 </span></span>
<span><span class="co">## D) </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## batch_normalization (Batch (None, 16, 8) 32 </span></span>
<span><span class="co">## Normalization) </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## lstm (LSTM) (None, 8) 544 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## dense (Dense) (None, 4) 36 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## dense_1 (Dense) (None, 2) 10 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## =================================================================</span></span>
<span><span class="co">## Total params: 1014 (3.96 KB)</span></span>
<span><span class="co">## Trainable params: 998 (3.90 KB)</span></span>
<span><span class="co">## Non-trainable params: 16 (64.00 Byte)</span></span>
<span><span class="co">## _________________________________________________________________</span></span></code></pre>
<p>Finally we can train the model.</p>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">hist</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/train_model.html">train_model</a></span><span class="op">(</span><span class="va">model</span>,</span>
<span> train_type <span class="op">=</span> <span class="st">"label_header"</span>,</span>
<span> run_name <span class="op">=</span> <span class="st">"gc_model_1"</span>,</span>
<span> path <span class="op">=</span> <span class="va">train_dir</span>,</span>
<span> path_val <span class="op">=</span> <span class="va">validation_dir</span>,</span>
<span> epochs <span class="op">=</span> <span class="fl">5</span>,</span>
<span> steps_per_epoch <span class="op">=</span> <span class="fl">2</span>, <span class="co"># 20</span></span>
<span> batch_size <span class="op">=</span> <span class="fl">64</span>,</span>
<span> step <span class="op">=</span> <span class="fl">50</span>, </span>
<span> path_tensorboard <span class="op">=</span> <span class="va">tb_dir</span>, <span class="co"># path to tensorboard logs</span></span>
<span> tb_images <span class="op">=</span> <span class="cn">F</span>, <span class="co"># show confusion matrix in tensorboard</span></span>
<span> vocabulary_label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"high_gc"</span>, <span class="st">"equal_dist"</span><span class="op">)</span><span class="op">)</span></span>
<span> </span>
<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">hist</span><span class="op">)</span></span></code></pre></div>
<p>Use the following command to open tensorboard in a browser:</p>
<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu">keras</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/tensorflow/man/tensorboard.html" class="external-link">tensorboard</a></span><span class="op">(</span><span class="va">tb_dir</span><span class="op">)</span></span></code></pre></div>
<p>We can observe the scores for loss, accuracy, balanced accuracy, F1
and AUC under the “SCALARS” tab.</p>
<p><img src="tb_images/loss.png" height="300"></p>
<p><img src="tb_images/acc.png" height="300"></p>
<p><img src="tb_images/bal_acc.png" height="300"></p>
<p><img src="tb_images/f1.png"></p>
<p><img src="tb_images/auc.png" height="300"></p>
<p>We can also observe how the learning rate might have changed</p>
<p><img src="tb_images/lr.png" height="300"></p>
<p>In the “training files seen” window, we can observe how often we
iterated over the training files.</p>
<p><img src="tb_images/files_seen.png" height="300"></p>
<p>In the “IMAGES” tab we can see a confusion matrix for the train and
validation scores for every epoch</p>
<p><img src="tb_images/cm_train.png" height="300"></p>
<p><img src="tb_images/cm_val.png" height="300"></p>
<p>In the “HPARAM” tab you can see hyper parameters of each run</p>
<p><img src="tb_images/hparam.png" height="300"></p>
</main>
</div>
<footer><div class="pkgdown-footer-left">
<p>Developed by Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardy.</p>
</div>
<div class="pkgdown-footer-right">
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.9.</p>
</div>
</footer>
</div>
</body>
</html>