|
a |
|
b/BioSeqNet/resnest/gluon/resnest.py |
|
|
1 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|
|
2 |
## Created by: Hang Zhang |
|
|
3 |
## Email: zhanghang0704@gmail.com |
|
|
4 |
## Copyright (c) 2020 |
|
|
5 |
## |
|
|
6 |
## LICENSE file in the root directory of this source tree |
|
|
7 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|
|
8 |
"""ResNeSt implemented in Gluon.""" |
|
|
9 |
|
|
|
10 |
__all__ = ['resnest50', 'resnest101', |
|
|
11 |
'resnest200', 'resnest269'] |
|
|
12 |
|
|
|
13 |
from .resnet import ResNet, Bottleneck |
|
|
14 |
from mxnet import cpu |
|
|
15 |
|
|
|
16 |
def resnest50(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
17 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
18 |
radix=2, cardinality=1, bottleneck_width=64, |
|
|
19 |
deep_stem=True, avg_down=True, |
|
|
20 |
avd=True, avd_first=False, |
|
|
21 |
use_splat=True, dropblock_prob=0.1, |
|
|
22 |
name_prefix='resnest_', **kwargs) |
|
|
23 |
if pretrained: |
|
|
24 |
from .model_store import get_model_file |
|
|
25 |
model.load_parameters(get_model_file('resnest50', root=root), ctx=ctx) |
|
|
26 |
return model |
|
|
27 |
|
|
|
28 |
def resnest101(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
29 |
model = ResNet(Bottleneck, [3, 4, 23, 3], |
|
|
30 |
radix=2, cardinality=1, bottleneck_width=64, |
|
|
31 |
deep_stem=True, avg_down=True, stem_width=64, |
|
|
32 |
avd=True, avd_first=False, use_splat=True, dropblock_prob=0.1, |
|
|
33 |
name_prefix='resnest_', **kwargs) |
|
|
34 |
if pretrained: |
|
|
35 |
from .model_store import get_model_file |
|
|
36 |
model.load_parameters(get_model_file('resnest101', root=root), ctx=ctx) |
|
|
37 |
return model |
|
|
38 |
|
|
|
39 |
def resnest200(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
40 |
model = ResNet(Bottleneck, [3, 24, 36, 3], deep_stem=True, avg_down=True, stem_width=64, |
|
|
41 |
avd=True, use_splat=True, dropblock_prob=0.1, final_drop=0.2, |
|
|
42 |
name_prefix='resnest_', **kwargs) |
|
|
43 |
if pretrained: |
|
|
44 |
from .model_store import get_model_file |
|
|
45 |
model.load_parameters(get_model_file('resnest200', root=root), ctx=ctx) |
|
|
46 |
return model |
|
|
47 |
|
|
|
48 |
def resnest269(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
49 |
model = ResNet(Bottleneck, [3, 30, 48, 8], deep_stem=True, avg_down=True, stem_width=64, |
|
|
50 |
avd=True, use_splat=True, dropblock_prob=0.1, final_drop=0.2, |
|
|
51 |
name_prefix='resnest_', **kwargs) |
|
|
52 |
if pretrained: |
|
|
53 |
from .model_store import get_model_file |
|
|
54 |
model.load_parameters(get_model_file('resnest269', root=root), ctx=ctx) |
|
|
55 |
return model |