[1fc74a]: / BioSeqNet / resnest / gluon / resnest.py

Download this file

56 lines (49 with data), 2.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""ResNeSt implemented in Gluon."""
__all__ = ['resnest50', 'resnest101',
'resnest200', 'resnest269']
from .resnet import ResNet, Bottleneck
from mxnet import cpu
def resnest50(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3],
radix=2, cardinality=1, bottleneck_width=64,
deep_stem=True, avg_down=True,
avd=True, avd_first=False,
use_splat=True, dropblock_prob=0.1,
name_prefix='resnest_', **kwargs)
if pretrained:
from .model_store import get_model_file
model.load_parameters(get_model_file('resnest50', root=root), ctx=ctx)
return model
def resnest101(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3],
radix=2, cardinality=1, bottleneck_width=64,
deep_stem=True, avg_down=True, stem_width=64,
avd=True, avd_first=False, use_splat=True, dropblock_prob=0.1,
name_prefix='resnest_', **kwargs)
if pretrained:
from .model_store import get_model_file
model.load_parameters(get_model_file('resnest101', root=root), ctx=ctx)
return model
def resnest200(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
model = ResNet(Bottleneck, [3, 24, 36, 3], deep_stem=True, avg_down=True, stem_width=64,
avd=True, use_splat=True, dropblock_prob=0.1, final_drop=0.2,
name_prefix='resnest_', **kwargs)
if pretrained:
from .model_store import get_model_file
model.load_parameters(get_model_file('resnest200', root=root), ctx=ctx)
return model
def resnest269(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs):
model = ResNet(Bottleneck, [3, 30, 48, 8], deep_stem=True, avg_down=True, stem_width=64,
avd=True, use_splat=True, dropblock_prob=0.1, final_drop=0.2,
name_prefix='resnest_', **kwargs)
if pretrained:
from .model_store import get_model_file
model.load_parameters(get_model_file('resnest269', root=root), ctx=ctx)
return model