Diff of /docs/statistics/pca.html [000000] .. [9173ee]

Switch to unified view

a b/docs/statistics/pca.html
1
<!doctype html>
2
<html lang="en">
3
<head>
4
<meta charset="utf-8">
5
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
6
<meta name="generator" content="pdoc 0.10.0" />
7
<title>pymskt.statistics.pca API documentation</title>
8
<meta name="description" content="" />
9
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
10
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
11
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
12
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
13
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
14
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
15
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
16
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
17
</head>
18
<body>
19
<main>
20
<article id="content">
21
<header>
22
<h1 class="title">Module <code>pymskt.statistics.pca</code></h1>
23
</header>
24
<section id="section-intro">
25
<details class="source">
26
<summary>
27
<span>Expand source code</span>
28
</summary>
29
<pre><code class="python">from tracemalloc import start
30
import numpy as np
31
from scipy.linalg import svd
32
import vtk
33
from vtk.util.numpy_support import numpy_to_vtk
34
from pymskt.mesh.utils import GIF
35
36
def pca_svd(data):
37
    &#34;&#34;&#34;
38
    Calculate eigenvalues &amp; eigenvectors of `data` using Singular Value Decomposition (SVD)
39
40
    Parameters
41
    ----------
42
    data : numpy.ndarray
43
        MxN matrix 
44
        M = # of features / dimensions of data
45
        N = # of trials / participants in dataset
46
47
    Returns
48
    -------
49
    tuple (PC = numpy.ndarray, V = numpy.ndarray)
50
        PC - each volumn is a principal component (eigenvector)
51
        V - Mx1 matrix of variances (coinciding with each PC)
52
53
    Notes
54
    -----
55
    Adapted from:
56
    &#34;A Tutorial on Principal Component Analysis by Jonathon Shlens&#34;
57
    https://arxiv.org/abs/1404.1100
58
    Inputs
59
    data = MxN matrix (M dimensions, N trials)
60
    Returns
61
    PC - each column is a PC
62
    V - Mx1 matrix of variances
63
    &#34;&#34;&#34;
64
    M, N = data.shape
65
    mn = np.mean(data, axis=1)
66
    data = data - mn[:, None]  # produce centered data. If already centered this shouldnt be harmful.
67
68
    Y = data.T / np.sqrt(N - 1)
69
70
    U, S, V = svd(Y, full_matrices=False)
71
    PC = V.T  # V are the principle components (PC)
72
    V = S ** 2  # The squared singular values are the variances (V)
73
74
    return PC, V
75
76
def get_ssm_deformation(PCs, Vs, mean_coords, pc=0, n_sds=3):
77
    &#34;&#34;&#34;
78
    Function to Statistical Shape Model (SSM) deformed along given Principal Component.
79
80
    Parameters
81
    ----------
82
    PCs : numpy.ndarray
83
        NxM ndarray; N = number of points on surface, M = number of principal components in model
84
        Each column is a principal component.
85
    Vs : numpy.ndarray
86
        M ndarray; M = number of principal components in model
87
        Each entry is the variance for the coinciding principal component in PCs
88
    mean_coords : numpy.ndarray
89
        3xN ndarray; N = number of points on surface. 
90
    pc : int, optional
91
        The principal component of the SSM to deform, by default 0
92
    n_sds : int, optional
93
        The number of standard deviations (sd) to deform the SSM. 
94
        This can be positive or negative to scale the model in either direction. , by default 3
95
96
    Returns
97
    -------
98
    numpy.ndarray
99
        3xN ndarray; N=number of points on mesh surface. 
100
        This includes the x/y/z position of each surface node after deformation using the SSM and
101
        the specified characteristics (pc, n_sds)
102
    &#34;&#34;&#34;
103
104
    pc_vector = PCs[:, pc]
105
    pc_vector_scale = np.sqrt(Vs[pc]) * n_sds # convert Variances to SDs &amp; multiply by n_sds (negative/positive important)
106
    coords_deformation = pc_vector * pc_vector_scale
107
    deformed_coords = (mean_coords.flatten() + coords_deformation).reshape(mean_coords.shape)
108
    return deformed_coords
109
110
def get_rand_bone_shape(PCs, Vs, mean_coords, n_pcs=100, n_samples=1, mean_=0., sd_=1.0):
111
    &#34;&#34;&#34;
112
    Function to get random bones using a Statistical Shape Model (SSM).
113
114
    Parameters
115
    ----------
116
    PCs : numpy.ndarray
117
        NxM ndarray; N = number of points on surface, M = number of principal components in model
118
        Each column is a principal component.
119
    Vs : numpy.ndarray
120
        M ndarray; M = number of principal components in model
121
        Each entry is the variance for the coinciding principal component in PCs
122
    mean_coords : numpy.ndarray
123
        3xN ndarray; N = number of points on surface.
124
    n_pcs : int, optional
125
        Number of PCs to randomly sample from (sequentially), by default 100
126
    n_samples : int, optional
127
        number of bones to create, by default 1
128
    mean_ : float, optional
129
        Mean of the normal distribution to sample PCs from, by default 0.
130
    sd_ : float, optional
131
        Standard deviation of the normal distribution to sample PCs from, by default 1.0
132
133
    Returns
134
    -------
135
    numpy.ndarray
136
        nx(3xN) ndarray; N=number of points on mesh surface, n=number of new meshes
137
        This includes the x/y/z position of each surface node(N) for the random bones(n).
138
    &#34;&#34;&#34;
139
140
    rand_pc_scores = np.random.normal(mean_, sd_, size=[n_samples, n_pcs])
141
    rand_pc_weights = rand_pc_scores * np.sqrt(Vs[:n_pcs])
142
    rand_data = rand_pc_weights @ PCs[:, :n_pcs].T
143
    rand_data = mean_coords.flatten() + rand_data
144
    
145
    return rand_data   
146
147
def create_vtk_mesh_from_deformed_points(mean_mesh, new_points):
148
    &#34;&#34;&#34;
149
    Create new vtk mesh (polydata) from a set of points (ndarray) deformed using the SSM. 
150
151
    Parameters
152
    ----------
153
    mean_mesh : vtk.PolyData
154
        vtk polydata of the mean mesh
155
    new_points : numpy.ndarray
156
        3xN ndarray; N=number of points on mesh surface (same as number of points on mean_mesh).
157
        This includes the x/y/z position of each surface node should be deformed to.
158
159
    Returns
160
    -------
161
    vtk.PolyData
162
        vtk polydata of the deformed mesh
163
    &#34;&#34;&#34;
164
165
    new_mesh = vtk.vtkPolyData()
166
    new_mesh.DeepCopy(mean_mesh)
167
    new_mesh.GetPoints().SetData(numpy_to_vtk(new_points))
168
    
169
    return new_mesh
170
171
def save_gif(
172
    path_save,
173
    PCs,
174
    Vs,
175
    mean_coords,  # mean_coords could be extracted from mean mesh...?
176
    mean_mesh,
177
    pc=0,
178
    min_sd=-3.,
179
    max_sd=3.,
180
    step=0.25,
181
    color=&#39;orange&#39;, 
182
    show_edges=True, 
183
    edge_color=&#39;black&#39;,
184
    camera_position=&#39;xz&#39;,
185
    window_size=[3000, 4000],
186
    background_color=&#39;white&#39;,
187
    verbose=False,
188
):
189
    &#34;&#34;&#34;
190
    Function to save a gif of the SSM deformation.
191
192
    Parameters
193
    ----------
194
    path_save : str
195
        Path to save the gif to.
196
    PCs : numpy.ndarray
197
        SSM Principal Components.
198
    Vs : numpy.ndarray
199
        SSM Variances.
200
    mean_coords : numpy.ndarray
201
        NxM ndarray; N = number of meshes, M = number of points x n_dimensions
202
    mean_mesh : vtk.PolyData
203
        vtk polydata of the mean mesh
204
    pc : int, optional
205
        The principal component of the SSM to deform, by default 0
206
    min_sd : float, optional
207
        The lower bound (minimum) standard deviations (sd) to deform the SSM from
208
        This can be positive or negative to scale the model in either direction. , by default -3.
209
    max_sd : float, optional
210
        The upper bound (maximum) standard deviations (sd) to deform the SSM from
211
        This can be positive or negative to scale the model in either direction. , by default 3.
212
    step : float, optional
213
        The step size (sd) to deform the SSM by, by default 0.25
214
    color : str, optional
215
        The color of the SSM surface during rendering, by default &#39;orange&#39;
216
    show_edges : bool, optional
217
        Whether to show the edges of the SSM surface during rendering, by default True
218
    edge_color : str, optional
219
        The color of the edges of the SSM surface during rendering, by default &#39;black&#39;
220
    camera_position : str, optional
221
        The camera position to use during rendering, by default &#39;xz&#39;
222
    window_size : list, optional
223
        The window size to use during rendering, by default [3000, 4000]
224
    background_color : str, optional
225
        The background color to use during rendering, by default &#39;white&#39;
226
    verbose : bool, optional
227
        Whether to print progress to console, by default False
228
229
230
    &#34;&#34;&#34;
231
    # ALTERNATIVELY... could pass a bunch of the above parameters as kwargs..?? but thats less clear
232
    gif = GIF(
233
        path_save=path_save,
234
        color=color, 
235
        show_edges=show_edges, 
236
        edge_color=edge_color,
237
        camera_position=camera_position,
238
        window_size=window_size,
239
        background_color=background_color,
240
    )
241
242
    for idx, sd in enumerate(np.arange(min_sd, max_sd + step, step)):
243
        if verbose is True:
244
            print(f&#39;Deforming SSM with idx={idx} sd={sd}&#39;)
245
        pts = get_ssm_deformation(PCs, Vs, mean_coords, pc=pc, n_sds=sd)
246
        
247
        if type(mean_mesh) == dict:
248
            mesh = []
249
            start_idx = 0
250
            for mesh_name, mesh_params in mean_mesh.items():
251
                mesh.append(
252
                    create_vtk_mesh_from_deformed_points(
253
                        mesh_params[&#39;mesh&#39;], 
254
                        pts[start_idx:start_idx+mesh_params[&#39;n_points&#39;], :],
255
                    )
256
                )
257
                start_idx += mesh_params[&#39;n_points&#39;]
258
        if type(mean_mesh) in (list, tuple):
259
            mesh = []
260
            start_idx = 0
261
            for mesh_ in mean_mesh:
262
                n_pts = mesh_.GetNumberOfPoints()
263
                mesh.append(
264
                    create_vtk_mesh_from_deformed_points(
265
                        mesh_, 
266
                        pts[start_idx:start_idx+n_pts, :],
267
                    )
268
                )
269
                start_idx += n_pts
270
        
271
        else:
272
            mesh = create_vtk_mesh_from_deformed_points(mean_mesh, pts)
273
        
274
        gif.add_mesh_frame(mesh)
275
276
    gif.done()</code></pre>
277
</details>
278
</section>
279
<section>
280
</section>
281
<section>
282
</section>
283
<section>
284
<h2 class="section-title" id="header-functions">Functions</h2>
285
<dl>
286
<dt id="pymskt.statistics.pca.create_vtk_mesh_from_deformed_points"><code class="name flex">
287
<span>def <span class="ident">create_vtk_mesh_from_deformed_points</span></span>(<span>mean_mesh, new_points)</span>
288
</code></dt>
289
<dd>
290
<div class="desc"><p>Create new vtk mesh (polydata) from a set of points (ndarray) deformed using the SSM. </p>
291
<h2 id="parameters">Parameters</h2>
292
<dl>
293
<dt><strong><code>mean_mesh</code></strong> :&ensp;<code>vtk.PolyData</code></dt>
294
<dd>vtk polydata of the mean mesh</dd>
295
<dt><strong><code>new_points</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
296
<dd>3xN ndarray; N=number of points on mesh surface (same as number of points on mean_mesh).
297
This includes the x/y/z position of each surface node should be deformed to.</dd>
298
</dl>
299
<h2 id="returns">Returns</h2>
300
<dl>
301
<dt><code>vtk.PolyData</code></dt>
302
<dd>vtk polydata of the deformed mesh</dd>
303
</dl></div>
304
<details class="source">
305
<summary>
306
<span>Expand source code</span>
307
</summary>
308
<pre><code class="python">def create_vtk_mesh_from_deformed_points(mean_mesh, new_points):
309
    &#34;&#34;&#34;
310
    Create new vtk mesh (polydata) from a set of points (ndarray) deformed using the SSM. 
311
312
    Parameters
313
    ----------
314
    mean_mesh : vtk.PolyData
315
        vtk polydata of the mean mesh
316
    new_points : numpy.ndarray
317
        3xN ndarray; N=number of points on mesh surface (same as number of points on mean_mesh).
318
        This includes the x/y/z position of each surface node should be deformed to.
319
320
    Returns
321
    -------
322
    vtk.PolyData
323
        vtk polydata of the deformed mesh
324
    &#34;&#34;&#34;
325
326
    new_mesh = vtk.vtkPolyData()
327
    new_mesh.DeepCopy(mean_mesh)
328
    new_mesh.GetPoints().SetData(numpy_to_vtk(new_points))
329
    
330
    return new_mesh</code></pre>
331
</details>
332
</dd>
333
<dt id="pymskt.statistics.pca.get_rand_bone_shape"><code class="name flex">
334
<span>def <span class="ident">get_rand_bone_shape</span></span>(<span>PCs, Vs, mean_coords, n_pcs=100, n_samples=1, mean_=0.0, sd_=1.0)</span>
335
</code></dt>
336
<dd>
337
<div class="desc"><p>Function to get random bones using a Statistical Shape Model (SSM).</p>
338
<h2 id="parameters">Parameters</h2>
339
<dl>
340
<dt><strong><code>PCs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
341
<dd>NxM ndarray; N = number of points on surface, M = number of principal components in model
342
Each column is a principal component.</dd>
343
<dt><strong><code>Vs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
344
<dd>M ndarray; M = number of principal components in model
345
Each entry is the variance for the coinciding principal component in PCs</dd>
346
<dt><strong><code>mean_coords</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
347
<dd>3xN ndarray; N = number of points on surface.</dd>
348
<dt><strong><code>n_pcs</code></strong> :&ensp;<code>int</code>, optional</dt>
349
<dd>Number of PCs to randomly sample from (sequentially), by default 100</dd>
350
<dt><strong><code>n_samples</code></strong> :&ensp;<code>int</code>, optional</dt>
351
<dd>number of bones to create, by default 1</dd>
352
<dt><strong><code>mean_</code></strong> :&ensp;<code>float</code>, optional</dt>
353
<dd>Mean of the normal distribution to sample PCs from, by default 0.</dd>
354
<dt><strong><code>sd_</code></strong> :&ensp;<code>float</code>, optional</dt>
355
<dd>Standard deviation of the normal distribution to sample PCs from, by default 1.0</dd>
356
</dl>
357
<h2 id="returns">Returns</h2>
358
<dl>
359
<dt><code>numpy.ndarray</code></dt>
360
<dd>nx(3xN) ndarray; N=number of points on mesh surface, n=number of new meshes
361
This includes the x/y/z position of each surface node(N) for the random bones(n).</dd>
362
</dl></div>
363
<details class="source">
364
<summary>
365
<span>Expand source code</span>
366
</summary>
367
<pre><code class="python">def get_rand_bone_shape(PCs, Vs, mean_coords, n_pcs=100, n_samples=1, mean_=0., sd_=1.0):
368
    &#34;&#34;&#34;
369
    Function to get random bones using a Statistical Shape Model (SSM).
370
371
    Parameters
372
    ----------
373
    PCs : numpy.ndarray
374
        NxM ndarray; N = number of points on surface, M = number of principal components in model
375
        Each column is a principal component.
376
    Vs : numpy.ndarray
377
        M ndarray; M = number of principal components in model
378
        Each entry is the variance for the coinciding principal component in PCs
379
    mean_coords : numpy.ndarray
380
        3xN ndarray; N = number of points on surface.
381
    n_pcs : int, optional
382
        Number of PCs to randomly sample from (sequentially), by default 100
383
    n_samples : int, optional
384
        number of bones to create, by default 1
385
    mean_ : float, optional
386
        Mean of the normal distribution to sample PCs from, by default 0.
387
    sd_ : float, optional
388
        Standard deviation of the normal distribution to sample PCs from, by default 1.0
389
390
    Returns
391
    -------
392
    numpy.ndarray
393
        nx(3xN) ndarray; N=number of points on mesh surface, n=number of new meshes
394
        This includes the x/y/z position of each surface node(N) for the random bones(n).
395
    &#34;&#34;&#34;
396
397
    rand_pc_scores = np.random.normal(mean_, sd_, size=[n_samples, n_pcs])
398
    rand_pc_weights = rand_pc_scores * np.sqrt(Vs[:n_pcs])
399
    rand_data = rand_pc_weights @ PCs[:, :n_pcs].T
400
    rand_data = mean_coords.flatten() + rand_data
401
    
402
    return rand_data   </code></pre>
403
</details>
404
</dd>
405
<dt id="pymskt.statistics.pca.get_ssm_deformation"><code class="name flex">
406
<span>def <span class="ident">get_ssm_deformation</span></span>(<span>PCs, Vs, mean_coords, pc=0, n_sds=3)</span>
407
</code></dt>
408
<dd>
409
<div class="desc"><p>Function to Statistical Shape Model (SSM) deformed along given Principal Component.</p>
410
<h2 id="parameters">Parameters</h2>
411
<dl>
412
<dt><strong><code>PCs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
413
<dd>NxM ndarray; N = number of points on surface, M = number of principal components in model
414
Each column is a principal component.</dd>
415
<dt><strong><code>Vs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
416
<dd>M ndarray; M = number of principal components in model
417
Each entry is the variance for the coinciding principal component in PCs</dd>
418
<dt><strong><code>mean_coords</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
419
<dd>3xN ndarray; N = number of points on surface.</dd>
420
<dt><strong><code>pc</code></strong> :&ensp;<code>int</code>, optional</dt>
421
<dd>The principal component of the SSM to deform, by default 0</dd>
422
<dt><strong><code>n_sds</code></strong> :&ensp;<code>int</code>, optional</dt>
423
<dd>The number of standard deviations (sd) to deform the SSM.
424
This can be positive or negative to scale the model in either direction. , by default 3</dd>
425
</dl>
426
<h2 id="returns">Returns</h2>
427
<dl>
428
<dt><code>numpy.ndarray</code></dt>
429
<dd>3xN ndarray; N=number of points on mesh surface.
430
This includes the x/y/z position of each surface node after deformation using the SSM and
431
the specified characteristics (pc, n_sds)</dd>
432
</dl></div>
433
<details class="source">
434
<summary>
435
<span>Expand source code</span>
436
</summary>
437
<pre><code class="python">def get_ssm_deformation(PCs, Vs, mean_coords, pc=0, n_sds=3):
438
    &#34;&#34;&#34;
439
    Function to Statistical Shape Model (SSM) deformed along given Principal Component.
440
441
    Parameters
442
    ----------
443
    PCs : numpy.ndarray
444
        NxM ndarray; N = number of points on surface, M = number of principal components in model
445
        Each column is a principal component.
446
    Vs : numpy.ndarray
447
        M ndarray; M = number of principal components in model
448
        Each entry is the variance for the coinciding principal component in PCs
449
    mean_coords : numpy.ndarray
450
        3xN ndarray; N = number of points on surface. 
451
    pc : int, optional
452
        The principal component of the SSM to deform, by default 0
453
    n_sds : int, optional
454
        The number of standard deviations (sd) to deform the SSM. 
455
        This can be positive or negative to scale the model in either direction. , by default 3
456
457
    Returns
458
    -------
459
    numpy.ndarray
460
        3xN ndarray; N=number of points on mesh surface. 
461
        This includes the x/y/z position of each surface node after deformation using the SSM and
462
        the specified characteristics (pc, n_sds)
463
    &#34;&#34;&#34;
464
465
    pc_vector = PCs[:, pc]
466
    pc_vector_scale = np.sqrt(Vs[pc]) * n_sds # convert Variances to SDs &amp; multiply by n_sds (negative/positive important)
467
    coords_deformation = pc_vector * pc_vector_scale
468
    deformed_coords = (mean_coords.flatten() + coords_deformation).reshape(mean_coords.shape)
469
    return deformed_coords</code></pre>
470
</details>
471
</dd>
472
<dt id="pymskt.statistics.pca.pca_svd"><code class="name flex">
473
<span>def <span class="ident">pca_svd</span></span>(<span>data)</span>
474
</code></dt>
475
<dd>
476
<div class="desc"><p>Calculate eigenvalues &amp; eigenvectors of <code>data</code> using Singular Value Decomposition (SVD)</p>
477
<h2 id="parameters">Parameters</h2>
478
<dl>
479
<dt><strong><code>data</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
480
<dd>MxN matrix
481
M = # of features / dimensions of data
482
N = # of trials / participants in dataset</dd>
483
</dl>
484
<h2 id="returns">Returns</h2>
485
<dl>
486
<dt><code>tuple (PC = numpy.ndarray, V = numpy.ndarray)</code></dt>
487
<dd>PC - each volumn is a principal component (eigenvector)
488
V - Mx1 matrix of variances (coinciding with each PC)</dd>
489
</dl>
490
<h2 id="notes">Notes</h2>
491
<p>Adapted from:
492
"A Tutorial on Principal Component Analysis by Jonathon Shlens"
493
<a href="https://arxiv.org/abs/1404.1100">https://arxiv.org/abs/1404.1100</a>
494
Inputs
495
data = MxN matrix (M dimensions, N trials)
496
Returns
497
PC - each column is a PC
498
V - Mx1 matrix of variances</p></div>
499
<details class="source">
500
<summary>
501
<span>Expand source code</span>
502
</summary>
503
<pre><code class="python">def pca_svd(data):
504
    &#34;&#34;&#34;
505
    Calculate eigenvalues &amp; eigenvectors of `data` using Singular Value Decomposition (SVD)
506
507
    Parameters
508
    ----------
509
    data : numpy.ndarray
510
        MxN matrix 
511
        M = # of features / dimensions of data
512
        N = # of trials / participants in dataset
513
514
    Returns
515
    -------
516
    tuple (PC = numpy.ndarray, V = numpy.ndarray)
517
        PC - each volumn is a principal component (eigenvector)
518
        V - Mx1 matrix of variances (coinciding with each PC)
519
520
    Notes
521
    -----
522
    Adapted from:
523
    &#34;A Tutorial on Principal Component Analysis by Jonathon Shlens&#34;
524
    https://arxiv.org/abs/1404.1100
525
    Inputs
526
    data = MxN matrix (M dimensions, N trials)
527
    Returns
528
    PC - each column is a PC
529
    V - Mx1 matrix of variances
530
    &#34;&#34;&#34;
531
    M, N = data.shape
532
    mn = np.mean(data, axis=1)
533
    data = data - mn[:, None]  # produce centered data. If already centered this shouldnt be harmful.
534
535
    Y = data.T / np.sqrt(N - 1)
536
537
    U, S, V = svd(Y, full_matrices=False)
538
    PC = V.T  # V are the principle components (PC)
539
    V = S ** 2  # The squared singular values are the variances (V)
540
541
    return PC, V</code></pre>
542
</details>
543
</dd>
544
<dt id="pymskt.statistics.pca.save_gif"><code class="name flex">
545
<span>def <span class="ident">save_gif</span></span>(<span>path_save, PCs, Vs, mean_coords, mean_mesh, pc=0, min_sd=-3.0, max_sd=3.0, step=0.25, color='orange', show_edges=True, edge_color='black', camera_position='xz', window_size=[3000, 4000], background_color='white', verbose=False)</span>
546
</code></dt>
547
<dd>
548
<div class="desc"><p>Function to save a gif of the SSM deformation.</p>
549
<h2 id="parameters">Parameters</h2>
550
<dl>
551
<dt><strong><code>path_save</code></strong> :&ensp;<code>str</code></dt>
552
<dd>Path to save the gif to.</dd>
553
<dt><strong><code>PCs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
554
<dd>SSM Principal Components.</dd>
555
<dt><strong><code>Vs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
556
<dd>SSM Variances.</dd>
557
<dt><strong><code>mean_coords</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
558
<dd>NxM ndarray; N = number of meshes, M = number of points x n_dimensions</dd>
559
<dt><strong><code>mean_mesh</code></strong> :&ensp;<code>vtk.PolyData</code></dt>
560
<dd>vtk polydata of the mean mesh</dd>
561
<dt><strong><code>pc</code></strong> :&ensp;<code>int</code>, optional</dt>
562
<dd>The principal component of the SSM to deform, by default 0</dd>
563
<dt><strong><code>min_sd</code></strong> :&ensp;<code>float</code>, optional</dt>
564
<dd>The lower bound (minimum) standard deviations (sd) to deform the SSM from
565
This can be positive or negative to scale the model in either direction. , by default -3.</dd>
566
<dt><strong><code>max_sd</code></strong> :&ensp;<code>float</code>, optional</dt>
567
<dd>The upper bound (maximum) standard deviations (sd) to deform the SSM from
568
This can be positive or negative to scale the model in either direction. , by default 3.</dd>
569
<dt><strong><code>step</code></strong> :&ensp;<code>float</code>, optional</dt>
570
<dd>The step size (sd) to deform the SSM by, by default 0.25</dd>
571
<dt><strong><code>color</code></strong> :&ensp;<code>str</code>, optional</dt>
572
<dd>The color of the SSM surface during rendering, by default 'orange'</dd>
573
<dt><strong><code>show_edges</code></strong> :&ensp;<code>bool</code>, optional</dt>
574
<dd>Whether to show the edges of the SSM surface during rendering, by default True</dd>
575
<dt><strong><code>edge_color</code></strong> :&ensp;<code>str</code>, optional</dt>
576
<dd>The color of the edges of the SSM surface during rendering, by default 'black'</dd>
577
<dt><strong><code>camera_position</code></strong> :&ensp;<code>str</code>, optional</dt>
578
<dd>The camera position to use during rendering, by default 'xz'</dd>
579
<dt><strong><code>window_size</code></strong> :&ensp;<code>list</code>, optional</dt>
580
<dd>The window size to use during rendering, by default [3000, 4000]</dd>
581
<dt><strong><code>background_color</code></strong> :&ensp;<code>str</code>, optional</dt>
582
<dd>The background color to use during rendering, by default 'white'</dd>
583
<dt><strong><code>verbose</code></strong> :&ensp;<code>bool</code>, optional</dt>
584
<dd>Whether to print progress to console, by default False</dd>
585
</dl></div>
586
<details class="source">
587
<summary>
588
<span>Expand source code</span>
589
</summary>
590
<pre><code class="python">def save_gif(
591
    path_save,
592
    PCs,
593
    Vs,
594
    mean_coords,  # mean_coords could be extracted from mean mesh...?
595
    mean_mesh,
596
    pc=0,
597
    min_sd=-3.,
598
    max_sd=3.,
599
    step=0.25,
600
    color=&#39;orange&#39;, 
601
    show_edges=True, 
602
    edge_color=&#39;black&#39;,
603
    camera_position=&#39;xz&#39;,
604
    window_size=[3000, 4000],
605
    background_color=&#39;white&#39;,
606
    verbose=False,
607
):
608
    &#34;&#34;&#34;
609
    Function to save a gif of the SSM deformation.
610
611
    Parameters
612
    ----------
613
    path_save : str
614
        Path to save the gif to.
615
    PCs : numpy.ndarray
616
        SSM Principal Components.
617
    Vs : numpy.ndarray
618
        SSM Variances.
619
    mean_coords : numpy.ndarray
620
        NxM ndarray; N = number of meshes, M = number of points x n_dimensions
621
    mean_mesh : vtk.PolyData
622
        vtk polydata of the mean mesh
623
    pc : int, optional
624
        The principal component of the SSM to deform, by default 0
625
    min_sd : float, optional
626
        The lower bound (minimum) standard deviations (sd) to deform the SSM from
627
        This can be positive or negative to scale the model in either direction. , by default -3.
628
    max_sd : float, optional
629
        The upper bound (maximum) standard deviations (sd) to deform the SSM from
630
        This can be positive or negative to scale the model in either direction. , by default 3.
631
    step : float, optional
632
        The step size (sd) to deform the SSM by, by default 0.25
633
    color : str, optional
634
        The color of the SSM surface during rendering, by default &#39;orange&#39;
635
    show_edges : bool, optional
636
        Whether to show the edges of the SSM surface during rendering, by default True
637
    edge_color : str, optional
638
        The color of the edges of the SSM surface during rendering, by default &#39;black&#39;
639
    camera_position : str, optional
640
        The camera position to use during rendering, by default &#39;xz&#39;
641
    window_size : list, optional
642
        The window size to use during rendering, by default [3000, 4000]
643
    background_color : str, optional
644
        The background color to use during rendering, by default &#39;white&#39;
645
    verbose : bool, optional
646
        Whether to print progress to console, by default False
647
648
649
    &#34;&#34;&#34;
650
    # ALTERNATIVELY... could pass a bunch of the above parameters as kwargs..?? but thats less clear
651
    gif = GIF(
652
        path_save=path_save,
653
        color=color, 
654
        show_edges=show_edges, 
655
        edge_color=edge_color,
656
        camera_position=camera_position,
657
        window_size=window_size,
658
        background_color=background_color,
659
    )
660
661
    for idx, sd in enumerate(np.arange(min_sd, max_sd + step, step)):
662
        if verbose is True:
663
            print(f&#39;Deforming SSM with idx={idx} sd={sd}&#39;)
664
        pts = get_ssm_deformation(PCs, Vs, mean_coords, pc=pc, n_sds=sd)
665
        
666
        if type(mean_mesh) == dict:
667
            mesh = []
668
            start_idx = 0
669
            for mesh_name, mesh_params in mean_mesh.items():
670
                mesh.append(
671
                    create_vtk_mesh_from_deformed_points(
672
                        mesh_params[&#39;mesh&#39;], 
673
                        pts[start_idx:start_idx+mesh_params[&#39;n_points&#39;], :],
674
                    )
675
                )
676
                start_idx += mesh_params[&#39;n_points&#39;]
677
        if type(mean_mesh) in (list, tuple):
678
            mesh = []
679
            start_idx = 0
680
            for mesh_ in mean_mesh:
681
                n_pts = mesh_.GetNumberOfPoints()
682
                mesh.append(
683
                    create_vtk_mesh_from_deformed_points(
684
                        mesh_, 
685
                        pts[start_idx:start_idx+n_pts, :],
686
                    )
687
                )
688
                start_idx += n_pts
689
        
690
        else:
691
            mesh = create_vtk_mesh_from_deformed_points(mean_mesh, pts)
692
        
693
        gif.add_mesh_frame(mesh)
694
695
    gif.done()</code></pre>
696
</details>
697
</dd>
698
</dl>
699
</section>
700
<section>
701
</section>
702
</article>
703
<nav id="sidebar">
704
<h1>Index</h1>
705
<div class="toc">
706
<ul></ul>
707
</div>
708
<ul id="index">
709
<li><h3>Super-module</h3>
710
<ul>
711
<li><code><a title="pymskt.statistics" href="index.html">pymskt.statistics</a></code></li>
712
</ul>
713
</li>
714
<li><h3><a href="#header-functions">Functions</a></h3>
715
<ul class="">
716
<li><code><a title="pymskt.statistics.pca.create_vtk_mesh_from_deformed_points" href="#pymskt.statistics.pca.create_vtk_mesh_from_deformed_points">create_vtk_mesh_from_deformed_points</a></code></li>
717
<li><code><a title="pymskt.statistics.pca.get_rand_bone_shape" href="#pymskt.statistics.pca.get_rand_bone_shape">get_rand_bone_shape</a></code></li>
718
<li><code><a title="pymskt.statistics.pca.get_ssm_deformation" href="#pymskt.statistics.pca.get_ssm_deformation">get_ssm_deformation</a></code></li>
719
<li><code><a title="pymskt.statistics.pca.pca_svd" href="#pymskt.statistics.pca.pca_svd">pca_svd</a></code></li>
720
<li><code><a title="pymskt.statistics.pca.save_gif" href="#pymskt.statistics.pca.save_gif">save_gif</a></code></li>
721
</ul>
722
</li>
723
</ul>
724
</nav>
725
</main>
726
<footer id="footer">
727
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
728
</footer>
729
</body>
730
</html>