[9173ee]: / docs / statistics / pca.html

Download this file

730 lines (675 with data), 34.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>pymskt.statistics.pca API documentation</title>
<meta name="description" content="" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>pymskt.statistics.pca</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">from tracemalloc import start
import numpy as np
from scipy.linalg import svd
import vtk
from vtk.util.numpy_support import numpy_to_vtk
from pymskt.mesh.utils import GIF
def pca_svd(data):
&#34;&#34;&#34;
Calculate eigenvalues &amp; eigenvectors of `data` using Singular Value Decomposition (SVD)
Parameters
----------
data : numpy.ndarray
MxN matrix
M = # of features / dimensions of data
N = # of trials / participants in dataset
Returns
-------
tuple (PC = numpy.ndarray, V = numpy.ndarray)
PC - each volumn is a principal component (eigenvector)
V - Mx1 matrix of variances (coinciding with each PC)
Notes
-----
Adapted from:
&#34;A Tutorial on Principal Component Analysis by Jonathon Shlens&#34;
https://arxiv.org/abs/1404.1100
Inputs
data = MxN matrix (M dimensions, N trials)
Returns
PC - each column is a PC
V - Mx1 matrix of variances
&#34;&#34;&#34;
M, N = data.shape
mn = np.mean(data, axis=1)
data = data - mn[:, None] # produce centered data. If already centered this shouldnt be harmful.
Y = data.T / np.sqrt(N - 1)
U, S, V = svd(Y, full_matrices=False)
PC = V.T # V are the principle components (PC)
V = S ** 2 # The squared singular values are the variances (V)
return PC, V
def get_ssm_deformation(PCs, Vs, mean_coords, pc=0, n_sds=3):
&#34;&#34;&#34;
Function to Statistical Shape Model (SSM) deformed along given Principal Component.
Parameters
----------
PCs : numpy.ndarray
NxM ndarray; N = number of points on surface, M = number of principal components in model
Each column is a principal component.
Vs : numpy.ndarray
M ndarray; M = number of principal components in model
Each entry is the variance for the coinciding principal component in PCs
mean_coords : numpy.ndarray
3xN ndarray; N = number of points on surface.
pc : int, optional
The principal component of the SSM to deform, by default 0
n_sds : int, optional
The number of standard deviations (sd) to deform the SSM.
This can be positive or negative to scale the model in either direction. , by default 3
Returns
-------
numpy.ndarray
3xN ndarray; N=number of points on mesh surface.
This includes the x/y/z position of each surface node after deformation using the SSM and
the specified characteristics (pc, n_sds)
&#34;&#34;&#34;
pc_vector = PCs[:, pc]
pc_vector_scale = np.sqrt(Vs[pc]) * n_sds # convert Variances to SDs &amp; multiply by n_sds (negative/positive important)
coords_deformation = pc_vector * pc_vector_scale
deformed_coords = (mean_coords.flatten() + coords_deformation).reshape(mean_coords.shape)
return deformed_coords
def get_rand_bone_shape(PCs, Vs, mean_coords, n_pcs=100, n_samples=1, mean_=0., sd_=1.0):
&#34;&#34;&#34;
Function to get random bones using a Statistical Shape Model (SSM).
Parameters
----------
PCs : numpy.ndarray
NxM ndarray; N = number of points on surface, M = number of principal components in model
Each column is a principal component.
Vs : numpy.ndarray
M ndarray; M = number of principal components in model
Each entry is the variance for the coinciding principal component in PCs
mean_coords : numpy.ndarray
3xN ndarray; N = number of points on surface.
n_pcs : int, optional
Number of PCs to randomly sample from (sequentially), by default 100
n_samples : int, optional
number of bones to create, by default 1
mean_ : float, optional
Mean of the normal distribution to sample PCs from, by default 0.
sd_ : float, optional
Standard deviation of the normal distribution to sample PCs from, by default 1.0
Returns
-------
numpy.ndarray
nx(3xN) ndarray; N=number of points on mesh surface, n=number of new meshes
This includes the x/y/z position of each surface node(N) for the random bones(n).
&#34;&#34;&#34;
rand_pc_scores = np.random.normal(mean_, sd_, size=[n_samples, n_pcs])
rand_pc_weights = rand_pc_scores * np.sqrt(Vs[:n_pcs])
rand_data = rand_pc_weights @ PCs[:, :n_pcs].T
rand_data = mean_coords.flatten() + rand_data
return rand_data
def create_vtk_mesh_from_deformed_points(mean_mesh, new_points):
&#34;&#34;&#34;
Create new vtk mesh (polydata) from a set of points (ndarray) deformed using the SSM.
Parameters
----------
mean_mesh : vtk.PolyData
vtk polydata of the mean mesh
new_points : numpy.ndarray
3xN ndarray; N=number of points on mesh surface (same as number of points on mean_mesh).
This includes the x/y/z position of each surface node should be deformed to.
Returns
-------
vtk.PolyData
vtk polydata of the deformed mesh
&#34;&#34;&#34;
new_mesh = vtk.vtkPolyData()
new_mesh.DeepCopy(mean_mesh)
new_mesh.GetPoints().SetData(numpy_to_vtk(new_points))
return new_mesh
def save_gif(
path_save,
PCs,
Vs,
mean_coords, # mean_coords could be extracted from mean mesh...?
mean_mesh,
pc=0,
min_sd=-3.,
max_sd=3.,
step=0.25,
color=&#39;orange&#39;,
show_edges=True,
edge_color=&#39;black&#39;,
camera_position=&#39;xz&#39;,
window_size=[3000, 4000],
background_color=&#39;white&#39;,
verbose=False,
):
&#34;&#34;&#34;
Function to save a gif of the SSM deformation.
Parameters
----------
path_save : str
Path to save the gif to.
PCs : numpy.ndarray
SSM Principal Components.
Vs : numpy.ndarray
SSM Variances.
mean_coords : numpy.ndarray
NxM ndarray; N = number of meshes, M = number of points x n_dimensions
mean_mesh : vtk.PolyData
vtk polydata of the mean mesh
pc : int, optional
The principal component of the SSM to deform, by default 0
min_sd : float, optional
The lower bound (minimum) standard deviations (sd) to deform the SSM from
This can be positive or negative to scale the model in either direction. , by default -3.
max_sd : float, optional
The upper bound (maximum) standard deviations (sd) to deform the SSM from
This can be positive or negative to scale the model in either direction. , by default 3.
step : float, optional
The step size (sd) to deform the SSM by, by default 0.25
color : str, optional
The color of the SSM surface during rendering, by default &#39;orange&#39;
show_edges : bool, optional
Whether to show the edges of the SSM surface during rendering, by default True
edge_color : str, optional
The color of the edges of the SSM surface during rendering, by default &#39;black&#39;
camera_position : str, optional
The camera position to use during rendering, by default &#39;xz&#39;
window_size : list, optional
The window size to use during rendering, by default [3000, 4000]
background_color : str, optional
The background color to use during rendering, by default &#39;white&#39;
verbose : bool, optional
Whether to print progress to console, by default False
&#34;&#34;&#34;
# ALTERNATIVELY... could pass a bunch of the above parameters as kwargs..?? but thats less clear
gif = GIF(
path_save=path_save,
color=color,
show_edges=show_edges,
edge_color=edge_color,
camera_position=camera_position,
window_size=window_size,
background_color=background_color,
)
for idx, sd in enumerate(np.arange(min_sd, max_sd + step, step)):
if verbose is True:
print(f&#39;Deforming SSM with idx={idx} sd={sd}&#39;)
pts = get_ssm_deformation(PCs, Vs, mean_coords, pc=pc, n_sds=sd)
if type(mean_mesh) == dict:
mesh = []
start_idx = 0
for mesh_name, mesh_params in mean_mesh.items():
mesh.append(
create_vtk_mesh_from_deformed_points(
mesh_params[&#39;mesh&#39;],
pts[start_idx:start_idx+mesh_params[&#39;n_points&#39;], :],
)
)
start_idx += mesh_params[&#39;n_points&#39;]
if type(mean_mesh) in (list, tuple):
mesh = []
start_idx = 0
for mesh_ in mean_mesh:
n_pts = mesh_.GetNumberOfPoints()
mesh.append(
create_vtk_mesh_from_deformed_points(
mesh_,
pts[start_idx:start_idx+n_pts, :],
)
)
start_idx += n_pts
else:
mesh = create_vtk_mesh_from_deformed_points(mean_mesh, pts)
gif.add_mesh_frame(mesh)
gif.done()</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="pymskt.statistics.pca.create_vtk_mesh_from_deformed_points"><code class="name flex">
<span>def <span class="ident">create_vtk_mesh_from_deformed_points</span></span>(<span>mean_mesh, new_points)</span>
</code></dt>
<dd>
<div class="desc"><p>Create new vtk mesh (polydata) from a set of points (ndarray) deformed using the SSM. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>mean_mesh</code></strong> :&ensp;<code>vtk.PolyData</code></dt>
<dd>vtk polydata of the mean mesh</dd>
<dt><strong><code>new_points</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>3xN ndarray; N=number of points on mesh surface (same as number of points on mean_mesh).
This includes the x/y/z position of each surface node should be deformed to.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.PolyData</code></dt>
<dd>vtk polydata of the deformed mesh</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def create_vtk_mesh_from_deformed_points(mean_mesh, new_points):
&#34;&#34;&#34;
Create new vtk mesh (polydata) from a set of points (ndarray) deformed using the SSM.
Parameters
----------
mean_mesh : vtk.PolyData
vtk polydata of the mean mesh
new_points : numpy.ndarray
3xN ndarray; N=number of points on mesh surface (same as number of points on mean_mesh).
This includes the x/y/z position of each surface node should be deformed to.
Returns
-------
vtk.PolyData
vtk polydata of the deformed mesh
&#34;&#34;&#34;
new_mesh = vtk.vtkPolyData()
new_mesh.DeepCopy(mean_mesh)
new_mesh.GetPoints().SetData(numpy_to_vtk(new_points))
return new_mesh</code></pre>
</details>
</dd>
<dt id="pymskt.statistics.pca.get_rand_bone_shape"><code class="name flex">
<span>def <span class="ident">get_rand_bone_shape</span></span>(<span>PCs, Vs, mean_coords, n_pcs=100, n_samples=1, mean_=0.0, sd_=1.0)</span>
</code></dt>
<dd>
<div class="desc"><p>Function to get random bones using a Statistical Shape Model (SSM).</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>PCs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>NxM ndarray; N = number of points on surface, M = number of principal components in model
Each column is a principal component.</dd>
<dt><strong><code>Vs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>M ndarray; M = number of principal components in model
Each entry is the variance for the coinciding principal component in PCs</dd>
<dt><strong><code>mean_coords</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>3xN ndarray; N = number of points on surface.</dd>
<dt><strong><code>n_pcs</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Number of PCs to randomly sample from (sequentially), by default 100</dd>
<dt><strong><code>n_samples</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>number of bones to create, by default 1</dd>
<dt><strong><code>mean_</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>Mean of the normal distribution to sample PCs from, by default 0.</dd>
<dt><strong><code>sd_</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>Standard deviation of the normal distribution to sample PCs from, by default 1.0</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>numpy.ndarray</code></dt>
<dd>nx(3xN) ndarray; N=number of points on mesh surface, n=number of new meshes
This includes the x/y/z position of each surface node(N) for the random bones(n).</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def get_rand_bone_shape(PCs, Vs, mean_coords, n_pcs=100, n_samples=1, mean_=0., sd_=1.0):
&#34;&#34;&#34;
Function to get random bones using a Statistical Shape Model (SSM).
Parameters
----------
PCs : numpy.ndarray
NxM ndarray; N = number of points on surface, M = number of principal components in model
Each column is a principal component.
Vs : numpy.ndarray
M ndarray; M = number of principal components in model
Each entry is the variance for the coinciding principal component in PCs
mean_coords : numpy.ndarray
3xN ndarray; N = number of points on surface.
n_pcs : int, optional
Number of PCs to randomly sample from (sequentially), by default 100
n_samples : int, optional
number of bones to create, by default 1
mean_ : float, optional
Mean of the normal distribution to sample PCs from, by default 0.
sd_ : float, optional
Standard deviation of the normal distribution to sample PCs from, by default 1.0
Returns
-------
numpy.ndarray
nx(3xN) ndarray; N=number of points on mesh surface, n=number of new meshes
This includes the x/y/z position of each surface node(N) for the random bones(n).
&#34;&#34;&#34;
rand_pc_scores = np.random.normal(mean_, sd_, size=[n_samples, n_pcs])
rand_pc_weights = rand_pc_scores * np.sqrt(Vs[:n_pcs])
rand_data = rand_pc_weights @ PCs[:, :n_pcs].T
rand_data = mean_coords.flatten() + rand_data
return rand_data </code></pre>
</details>
</dd>
<dt id="pymskt.statistics.pca.get_ssm_deformation"><code class="name flex">
<span>def <span class="ident">get_ssm_deformation</span></span>(<span>PCs, Vs, mean_coords, pc=0, n_sds=3)</span>
</code></dt>
<dd>
<div class="desc"><p>Function to Statistical Shape Model (SSM) deformed along given Principal Component.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>PCs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>NxM ndarray; N = number of points on surface, M = number of principal components in model
Each column is a principal component.</dd>
<dt><strong><code>Vs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>M ndarray; M = number of principal components in model
Each entry is the variance for the coinciding principal component in PCs</dd>
<dt><strong><code>mean_coords</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>3xN ndarray; N = number of points on surface.</dd>
<dt><strong><code>pc</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The principal component of the SSM to deform, by default 0</dd>
<dt><strong><code>n_sds</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The number of standard deviations (sd) to deform the SSM.
This can be positive or negative to scale the model in either direction. , by default 3</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>numpy.ndarray</code></dt>
<dd>3xN ndarray; N=number of points on mesh surface.
This includes the x/y/z position of each surface node after deformation using the SSM and
the specified characteristics (pc, n_sds)</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def get_ssm_deformation(PCs, Vs, mean_coords, pc=0, n_sds=3):
&#34;&#34;&#34;
Function to Statistical Shape Model (SSM) deformed along given Principal Component.
Parameters
----------
PCs : numpy.ndarray
NxM ndarray; N = number of points on surface, M = number of principal components in model
Each column is a principal component.
Vs : numpy.ndarray
M ndarray; M = number of principal components in model
Each entry is the variance for the coinciding principal component in PCs
mean_coords : numpy.ndarray
3xN ndarray; N = number of points on surface.
pc : int, optional
The principal component of the SSM to deform, by default 0
n_sds : int, optional
The number of standard deviations (sd) to deform the SSM.
This can be positive or negative to scale the model in either direction. , by default 3
Returns
-------
numpy.ndarray
3xN ndarray; N=number of points on mesh surface.
This includes the x/y/z position of each surface node after deformation using the SSM and
the specified characteristics (pc, n_sds)
&#34;&#34;&#34;
pc_vector = PCs[:, pc]
pc_vector_scale = np.sqrt(Vs[pc]) * n_sds # convert Variances to SDs &amp; multiply by n_sds (negative/positive important)
coords_deformation = pc_vector * pc_vector_scale
deformed_coords = (mean_coords.flatten() + coords_deformation).reshape(mean_coords.shape)
return deformed_coords</code></pre>
</details>
</dd>
<dt id="pymskt.statistics.pca.pca_svd"><code class="name flex">
<span>def <span class="ident">pca_svd</span></span>(<span>data)</span>
</code></dt>
<dd>
<div class="desc"><p>Calculate eigenvalues &amp; eigenvectors of <code>data</code> using Singular Value Decomposition (SVD)</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>data</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>MxN matrix
M = # of features / dimensions of data
N = # of trials / participants in dataset</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>tuple (PC = numpy.ndarray, V = numpy.ndarray)</code></dt>
<dd>PC - each volumn is a principal component (eigenvector)
V - Mx1 matrix of variances (coinciding with each PC)</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>Adapted from:
"A Tutorial on Principal Component Analysis by Jonathon Shlens"
<a href="https://arxiv.org/abs/1404.1100">https://arxiv.org/abs/1404.1100</a>
Inputs
data = MxN matrix (M dimensions, N trials)
Returns
PC - each column is a PC
V - Mx1 matrix of variances</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def pca_svd(data):
&#34;&#34;&#34;
Calculate eigenvalues &amp; eigenvectors of `data` using Singular Value Decomposition (SVD)
Parameters
----------
data : numpy.ndarray
MxN matrix
M = # of features / dimensions of data
N = # of trials / participants in dataset
Returns
-------
tuple (PC = numpy.ndarray, V = numpy.ndarray)
PC - each volumn is a principal component (eigenvector)
V - Mx1 matrix of variances (coinciding with each PC)
Notes
-----
Adapted from:
&#34;A Tutorial on Principal Component Analysis by Jonathon Shlens&#34;
https://arxiv.org/abs/1404.1100
Inputs
data = MxN matrix (M dimensions, N trials)
Returns
PC - each column is a PC
V - Mx1 matrix of variances
&#34;&#34;&#34;
M, N = data.shape
mn = np.mean(data, axis=1)
data = data - mn[:, None] # produce centered data. If already centered this shouldnt be harmful.
Y = data.T / np.sqrt(N - 1)
U, S, V = svd(Y, full_matrices=False)
PC = V.T # V are the principle components (PC)
V = S ** 2 # The squared singular values are the variances (V)
return PC, V</code></pre>
</details>
</dd>
<dt id="pymskt.statistics.pca.save_gif"><code class="name flex">
<span>def <span class="ident">save_gif</span></span>(<span>path_save, PCs, Vs, mean_coords, mean_mesh, pc=0, min_sd=-3.0, max_sd=3.0, step=0.25, color='orange', show_edges=True, edge_color='black', camera_position='xz', window_size=[3000, 4000], background_color='white', verbose=False)</span>
</code></dt>
<dd>
<div class="desc"><p>Function to save a gif of the SSM deformation.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>path_save</code></strong> :&ensp;<code>str</code></dt>
<dd>Path to save the gif to.</dd>
<dt><strong><code>PCs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>SSM Principal Components.</dd>
<dt><strong><code>Vs</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>SSM Variances.</dd>
<dt><strong><code>mean_coords</code></strong> :&ensp;<code>numpy.ndarray</code></dt>
<dd>NxM ndarray; N = number of meshes, M = number of points x n_dimensions</dd>
<dt><strong><code>mean_mesh</code></strong> :&ensp;<code>vtk.PolyData</code></dt>
<dd>vtk polydata of the mean mesh</dd>
<dt><strong><code>pc</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The principal component of the SSM to deform, by default 0</dd>
<dt><strong><code>min_sd</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The lower bound (minimum) standard deviations (sd) to deform the SSM from
This can be positive or negative to scale the model in either direction. , by default -3.</dd>
<dt><strong><code>max_sd</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The upper bound (maximum) standard deviations (sd) to deform the SSM from
This can be positive or negative to scale the model in either direction. , by default 3.</dd>
<dt><strong><code>step</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The step size (sd) to deform the SSM by, by default 0.25</dd>
<dt><strong><code>color</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>The color of the SSM surface during rendering, by default 'orange'</dd>
<dt><strong><code>show_edges</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether to show the edges of the SSM surface during rendering, by default True</dd>
<dt><strong><code>edge_color</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>The color of the edges of the SSM surface during rendering, by default 'black'</dd>
<dt><strong><code>camera_position</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>The camera position to use during rendering, by default 'xz'</dd>
<dt><strong><code>window_size</code></strong> :&ensp;<code>list</code>, optional</dt>
<dd>The window size to use during rendering, by default [3000, 4000]</dd>
<dt><strong><code>background_color</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>The background color to use during rendering, by default 'white'</dd>
<dt><strong><code>verbose</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether to print progress to console, by default False</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def save_gif(
path_save,
PCs,
Vs,
mean_coords, # mean_coords could be extracted from mean mesh...?
mean_mesh,
pc=0,
min_sd=-3.,
max_sd=3.,
step=0.25,
color=&#39;orange&#39;,
show_edges=True,
edge_color=&#39;black&#39;,
camera_position=&#39;xz&#39;,
window_size=[3000, 4000],
background_color=&#39;white&#39;,
verbose=False,
):
&#34;&#34;&#34;
Function to save a gif of the SSM deformation.
Parameters
----------
path_save : str
Path to save the gif to.
PCs : numpy.ndarray
SSM Principal Components.
Vs : numpy.ndarray
SSM Variances.
mean_coords : numpy.ndarray
NxM ndarray; N = number of meshes, M = number of points x n_dimensions
mean_mesh : vtk.PolyData
vtk polydata of the mean mesh
pc : int, optional
The principal component of the SSM to deform, by default 0
min_sd : float, optional
The lower bound (minimum) standard deviations (sd) to deform the SSM from
This can be positive or negative to scale the model in either direction. , by default -3.
max_sd : float, optional
The upper bound (maximum) standard deviations (sd) to deform the SSM from
This can be positive or negative to scale the model in either direction. , by default 3.
step : float, optional
The step size (sd) to deform the SSM by, by default 0.25
color : str, optional
The color of the SSM surface during rendering, by default &#39;orange&#39;
show_edges : bool, optional
Whether to show the edges of the SSM surface during rendering, by default True
edge_color : str, optional
The color of the edges of the SSM surface during rendering, by default &#39;black&#39;
camera_position : str, optional
The camera position to use during rendering, by default &#39;xz&#39;
window_size : list, optional
The window size to use during rendering, by default [3000, 4000]
background_color : str, optional
The background color to use during rendering, by default &#39;white&#39;
verbose : bool, optional
Whether to print progress to console, by default False
&#34;&#34;&#34;
# ALTERNATIVELY... could pass a bunch of the above parameters as kwargs..?? but thats less clear
gif = GIF(
path_save=path_save,
color=color,
show_edges=show_edges,
edge_color=edge_color,
camera_position=camera_position,
window_size=window_size,
background_color=background_color,
)
for idx, sd in enumerate(np.arange(min_sd, max_sd + step, step)):
if verbose is True:
print(f&#39;Deforming SSM with idx={idx} sd={sd}&#39;)
pts = get_ssm_deformation(PCs, Vs, mean_coords, pc=pc, n_sds=sd)
if type(mean_mesh) == dict:
mesh = []
start_idx = 0
for mesh_name, mesh_params in mean_mesh.items():
mesh.append(
create_vtk_mesh_from_deformed_points(
mesh_params[&#39;mesh&#39;],
pts[start_idx:start_idx+mesh_params[&#39;n_points&#39;], :],
)
)
start_idx += mesh_params[&#39;n_points&#39;]
if type(mean_mesh) in (list, tuple):
mesh = []
start_idx = 0
for mesh_ in mean_mesh:
n_pts = mesh_.GetNumberOfPoints()
mesh.append(
create_vtk_mesh_from_deformed_points(
mesh_,
pts[start_idx:start_idx+n_pts, :],
)
)
start_idx += n_pts
else:
mesh = create_vtk_mesh_from_deformed_points(mean_mesh, pts)
gif.add_mesh_frame(mesh)
gif.done()</code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="pymskt.statistics" href="index.html">pymskt.statistics</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="pymskt.statistics.pca.create_vtk_mesh_from_deformed_points" href="#pymskt.statistics.pca.create_vtk_mesh_from_deformed_points">create_vtk_mesh_from_deformed_points</a></code></li>
<li><code><a title="pymskt.statistics.pca.get_rand_bone_shape" href="#pymskt.statistics.pca.get_rand_bone_shape">get_rand_bone_shape</a></code></li>
<li><code><a title="pymskt.statistics.pca.get_ssm_deformation" href="#pymskt.statistics.pca.get_ssm_deformation">get_ssm_deformation</a></code></li>
<li><code><a title="pymskt.statistics.pca.pca_svd" href="#pymskt.statistics.pca.pca_svd">pca_svd</a></code></li>
<li><code><a title="pymskt.statistics.pca.save_gif" href="#pymskt.statistics.pca.save_gif">save_gif</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>