|
a |
|
b/project/signin/prediction.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Fri Mar 26 11:43:51 2021 |
|
|
4 |
|
|
|
5 |
@author: JOEL |
|
|
6 |
""" |
|
|
7 |
import pandas as pd |
|
|
8 |
import numpy as np |
|
|
9 |
import tensorflow as tf |
|
|
10 |
import keras |
|
|
11 |
from keras import backend as K |
|
|
12 |
from keras.models import Model |
|
|
13 |
import pickle |
|
|
14 |
import os |
|
|
15 |
|
|
|
16 |
def mri_predict(axial,coronal,sagittal): |
|
|
17 |
axial = axial.reshape(16,256,256,1) |
|
|
18 |
coronal = coronal.reshape(16,256,256,1) |
|
|
19 |
sagittal = sagittal.reshape(16,256,256,1) |
|
|
20 |
axial_cnn = keras.models.load_model(os.path.join("signin","axcnn_new"+".h5")) |
|
|
21 |
coronal_cnn = keras.models.load_model(os.path.join("signin","corcnn_new"+".h5")) |
|
|
22 |
sagittal_cnn = keras.models.load_model(os.path.join("signin","sagcnn_new"+".h5")) |
|
|
23 |
filename = os.path.join("signin","softmax_reg_new"+".sav") |
|
|
24 |
s_model = pickle.load(open(filename, 'rb')) |
|
|
25 |
ax_prediction = 0 |
|
|
26 |
cor_prediction = 0 |
|
|
27 |
sag_prediction = 0 |
|
|
28 |
for i in range(16): |
|
|
29 |
axialtemp = axial[i,:,:,:] |
|
|
30 |
axialtemp = axialtemp.reshape(1,256,256,1) |
|
|
31 |
ax_predict = axial_cnn.predict(axialtemp) |
|
|
32 |
ax_prediction+=ax_predict |
|
|
33 |
coronaltemp = coronal[i,:,:,:] |
|
|
34 |
coronaltemp = coronaltemp.reshape(1,256,256,1) |
|
|
35 |
cor_predict = coronal_cnn.predict(coronaltemp) |
|
|
36 |
cor_prediction+=cor_predict |
|
|
37 |
sagittaltemp = sagittal[i,:,:,:] |
|
|
38 |
sagittaltemp = sagittaltemp.reshape(1,256,256,1) |
|
|
39 |
sag_predict = sagittal_cnn.predict(sagittaltemp) |
|
|
40 |
sag_prediction+=sag_predict |
|
|
41 |
fp_sag = sag_prediction/16 |
|
|
42 |
fp_ax = ax_prediction/16 |
|
|
43 |
fp_cor = cor_prediction/16 |
|
|
44 |
|
|
|
45 |
fp_ax = np.array(fp_ax) |
|
|
46 |
fp_cor = np.array(fp_cor) |
|
|
47 |
fp_sag = np.array(fp_sag) |
|
|
48 |
|
|
|
49 |
combined = np.concatenate((fp_ax,fp_cor,fp_sag),axis = 1) |
|
|
50 |
fp = int(s_model.predict(combined)) |
|
|
51 |
perc = 0 |
|
|
52 |
perc = (fp_ax[0,fp]+fp_cor[0,fp]+fp_sag[0,fp])/3 |
|
|
53 |
return(fp,perc) |