[69ab9e]: / project / signin / prediction.py

Download this file

54 lines (49 with data), 1.9 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 26 11:43:51 2021
@author: JOEL
"""
import pandas as pd
import numpy as np
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Model
import pickle
import os
def mri_predict(axial,coronal,sagittal):
axial = axial.reshape(16,256,256,1)
coronal = coronal.reshape(16,256,256,1)
sagittal = sagittal.reshape(16,256,256,1)
axial_cnn = keras.models.load_model(os.path.join("signin","axcnn_new"+".h5"))
coronal_cnn = keras.models.load_model(os.path.join("signin","corcnn_new"+".h5"))
sagittal_cnn = keras.models.load_model(os.path.join("signin","sagcnn_new"+".h5"))
filename = os.path.join("signin","softmax_reg_new"+".sav")
s_model = pickle.load(open(filename, 'rb'))
ax_prediction = 0
cor_prediction = 0
sag_prediction = 0
for i in range(16):
axialtemp = axial[i,:,:,:]
axialtemp = axialtemp.reshape(1,256,256,1)
ax_predict = axial_cnn.predict(axialtemp)
ax_prediction+=ax_predict
coronaltemp = coronal[i,:,:,:]
coronaltemp = coronaltemp.reshape(1,256,256,1)
cor_predict = coronal_cnn.predict(coronaltemp)
cor_prediction+=cor_predict
sagittaltemp = sagittal[i,:,:,:]
sagittaltemp = sagittaltemp.reshape(1,256,256,1)
sag_predict = sagittal_cnn.predict(sagittaltemp)
sag_prediction+=sag_predict
fp_sag = sag_prediction/16
fp_ax = ax_prediction/16
fp_cor = cor_prediction/16
fp_ax = np.array(fp_ax)
fp_cor = np.array(fp_cor)
fp_sag = np.array(fp_sag)
combined = np.concatenate((fp_ax,fp_cor,fp_sag),axis = 1)
fp = int(s_model.predict(combined))
perc = 0
perc = (fp_ax[0,fp]+fp_cor[0,fp]+fp_sag[0,fp])/3
return(fp,perc)