Diff of /mmaction/apis/train.py [000000] .. [6d389a]

Switch to unified view

a b/mmaction/apis/train.py
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import copy as cp
3
import os
4
import os.path as osp
5
import time
6
7
import numpy as np
8
import torch
9
import torch.distributed as dist
10
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
11
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook,
12
                         build_optimizer, get_dist_info)
13
from mmcv.runner.hooks import Fp16OptimizerHook
14
15
from ..core import (DistEvalHook, EvalHook, OmniSourceDistSamplerSeedHook,
16
                    OmniSourceRunner)
17
from ..datasets import build_dataloader, build_dataset
18
from ..utils import PreciseBNHook, get_root_logger
19
from .test import multi_gpu_test
20
21
22
def init_random_seed(seed=None, device='cuda'):
23
    """Initialize random seed.
24
25
    If the seed is not set, the seed will be automatically randomized,
26
    and then broadcast to all processes to prevent some potential bugs.
27
    Args:
28
        seed (int, Optional): The seed. Default to None.
29
        device (str): The device where the seed will be put on.
30
            Default to 'cuda'.
31
    Returns:
32
        int: Seed to be used.
33
    """
34
    if seed is not None:
35
        return seed
36
37
    # Make sure all ranks share the same random seed to prevent
38
    # some potential bugs. Please refer to
39
    # https://github.com/open-mmlab/mmdetection/issues/6339
40
    rank, world_size = get_dist_info()
41
    seed = np.random.randint(2**31)
42
43
    if world_size == 1:
44
        return seed
45
46
    if rank == 0:
47
        random_num = torch.tensor(seed, dtype=torch.int32, device=device)
48
    else:
49
        random_num = torch.tensor(0, dtype=torch.int32, device=device)
50
51
    dist.broadcast(random_num, src=0)
52
    return random_num.item()
53
54
55
def train_model(model,
56
                dataset,
57
                cfg,
58
                distributed=False,
59
                validate=False,
60
                test=dict(test_best=False, test_last=False),
61
                timestamp=None,
62
                meta=None):
63
    """Train model entry function.
64
65
    Args:
66
        model (nn.Module): The model to be trained.
67
        dataset (:obj:`Dataset`): Train dataset.
68
        cfg (dict): The config dict for training.
69
        distributed (bool): Whether to use distributed training.
70
            Default: False.
71
        validate (bool): Whether to do evaluation. Default: False.
72
        test (dict): The testing option, with two keys: test_last & test_best.
73
            The value is True or False, indicating whether to test the
74
            corresponding checkpoint.
75
            Default: dict(test_best=False, test_last=False).
76
        timestamp (str | None): Local time for runner. Default: None.
77
        meta (dict | None): Meta dict to record some important information.
78
            Default: None
79
    """
80
    logger = get_root_logger(log_level=cfg.log_level)
81
82
    # prepare data loaders
83
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
84
85
    dataloader_setting = dict(
86
        videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
87
        workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
88
        persistent_workers=cfg.data.get('persistent_workers', False),
89
        num_gpus=len(cfg.gpu_ids),
90
        dist=distributed,
91
        seed=cfg.seed)
92
    dataloader_setting = dict(dataloader_setting,
93
                              **cfg.data.get('train_dataloader', {}))
94
95
    if cfg.omnisource:
96
        # The option can override videos_per_gpu
97
        train_ratio = cfg.data.get('train_ratio', [1] * len(dataset))
98
        omni_videos_per_gpu = cfg.data.get('omni_videos_per_gpu', None)
99
        if omni_videos_per_gpu is None:
100
            dataloader_settings = [dataloader_setting] * len(dataset)
101
        else:
102
            dataloader_settings = []
103
            for videos_per_gpu in omni_videos_per_gpu:
104
                this_setting = cp.deepcopy(dataloader_setting)
105
                this_setting['videos_per_gpu'] = videos_per_gpu
106
                dataloader_settings.append(this_setting)
107
        data_loaders = [
108
            build_dataloader(ds, **setting)
109
            for ds, setting in zip(dataset, dataloader_settings)
110
        ]
111
112
    else:
113
        data_loaders = [
114
            build_dataloader(ds, **dataloader_setting) for ds in dataset
115
        ]
116
117
    # put model on gpus
118
    if distributed:
119
        find_unused_parameters = cfg.get('find_unused_parameters', False)
120
        # Sets the `find_unused_parameters` parameter in
121
        # torch.nn.parallel.DistributedDataParallel
122
        model = MMDistributedDataParallel(
123
            model.cuda(),
124
            device_ids=[torch.cuda.current_device()],
125
            broadcast_buffers=False,
126
            find_unused_parameters=find_unused_parameters)
127
    else:
128
        model = MMDataParallel(
129
            model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
130
131
    # build runner
132
    optimizer = build_optimizer(model, cfg.optimizer)
133
134
    Runner = OmniSourceRunner if cfg.omnisource else EpochBasedRunner
135
    runner = Runner(
136
        model,
137
        optimizer=optimizer,
138
        work_dir=cfg.work_dir,
139
        logger=logger,
140
        meta=meta)
141
    # an ugly workaround to make .log and .log.json filenames the same
142
    runner.timestamp = timestamp
143
144
    # fp16 setting
145
    fp16_cfg = cfg.get('fp16', None)
146
    if fp16_cfg is not None:
147
        optimizer_config = Fp16OptimizerHook(
148
            **cfg.optimizer_config, **fp16_cfg, distributed=distributed)
149
    elif distributed and 'type' not in cfg.optimizer_config:
150
        optimizer_config = OptimizerHook(**cfg.optimizer_config)
151
    else:
152
        optimizer_config = cfg.optimizer_config
153
154
    # register hooks
155
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
156
                                   cfg.checkpoint_config, cfg.log_config,
157
                                   cfg.get('momentum_config', None))
158
    if distributed:
159
        if cfg.omnisource:
160
            runner.register_hook(OmniSourceDistSamplerSeedHook())
161
        else:
162
            runner.register_hook(DistSamplerSeedHook())
163
164
    # precise bn setting
165
    if cfg.get('precise_bn', False):
166
        precise_bn_dataset = build_dataset(cfg.data.train)
167
        dataloader_setting = dict(
168
            videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
169
            workers_per_gpu=1,  # save memory and time
170
            persistent_workers=cfg.data.get('persistent_workers', False),
171
            num_gpus=len(cfg.gpu_ids),
172
            dist=distributed,
173
            seed=cfg.seed)
174
        data_loader_precise_bn = build_dataloader(precise_bn_dataset,
175
                                                  **dataloader_setting)
176
        precise_bn_hook = PreciseBNHook(data_loader_precise_bn,
177
                                        **cfg.get('precise_bn'))
178
        runner.register_hook(precise_bn_hook)
179
180
    if validate:
181
        eval_cfg = cfg.get('evaluation', {})
182
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
183
        dataloader_setting = dict(
184
            videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
185
            workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
186
            persistent_workers=cfg.data.get('persistent_workers', False),
187
            # cfg.gpus will be ignored if distributed
188
            num_gpus=len(cfg.gpu_ids),
189
            dist=distributed,
190
            shuffle=False)
191
        dataloader_setting = dict(dataloader_setting,
192
                                  **cfg.data.get('val_dataloader', {}))
193
        val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
194
        eval_hook = DistEvalHook(val_dataloader, **eval_cfg) if distributed \
195
            else EvalHook(val_dataloader, **eval_cfg)
196
        runner.register_hook(eval_hook)
197
198
    if cfg.resume_from:
199
        runner.resume(cfg.resume_from)
200
    elif cfg.load_from:
201
        runner.load_checkpoint(cfg.load_from)
202
    runner_kwargs = dict()
203
    if cfg.omnisource:
204
        runner_kwargs = dict(train_ratio=train_ratio)
205
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs, **runner_kwargs)
206
207
    dist.barrier()
208
    time.sleep(5)
209
210
    if test['test_last'] or test['test_best']:
211
        best_ckpt_path = None
212
        if test['test_best']:
213
            ckpt_paths = [x for x in os.listdir(cfg.work_dir) if 'best' in x]
214
            ckpt_paths = [x for x in ckpt_paths if x.endswith('.pth')]
215
            if len(ckpt_paths) == 0:
216
                runner.logger.info('Warning: test_best set, but no ckpt found')
217
                test['test_best'] = False
218
                if not test['test_last']:
219
                    return
220
            elif len(ckpt_paths) > 1:
221
                epoch_ids = [
222
                    int(x.split('epoch_')[-1][:-4]) for x in ckpt_paths
223
                ]
224
                best_ckpt_path = ckpt_paths[np.argmax(epoch_ids)]
225
            else:
226
                best_ckpt_path = ckpt_paths[0]
227
            if best_ckpt_path:
228
                best_ckpt_path = osp.join(cfg.work_dir, best_ckpt_path)
229
230
        test_dataset = build_dataset(cfg.data.test, dict(test_mode=True))
231
        gpu_collect = cfg.get('evaluation', {}).get('gpu_collect', False)
232
        tmpdir = cfg.get('evaluation', {}).get('tmpdir',
233
                                               osp.join(cfg.work_dir, 'tmp'))
234
        dataloader_setting = dict(
235
            videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
236
            workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
237
            persistent_workers=cfg.data.get('persistent_workers', False),
238
            num_gpus=len(cfg.gpu_ids),
239
            dist=distributed,
240
            shuffle=False)
241
        dataloader_setting = dict(dataloader_setting,
242
                                  **cfg.data.get('test_dataloader', {}))
243
244
        test_dataloader = build_dataloader(test_dataset, **dataloader_setting)
245
246
        names, ckpts = [], []
247
248
        if test['test_last']:
249
            names.append('last')
250
            ckpts.append(None)
251
        if test['test_best'] and best_ckpt_path is not None:
252
            names.append('best')
253
            ckpts.append(best_ckpt_path)
254
255
        for name, ckpt in zip(names, ckpts):
256
            if ckpt is not None:
257
                runner.load_checkpoint(ckpt)
258
259
            outputs = multi_gpu_test(runner.model, test_dataloader, tmpdir,
260
                                     gpu_collect)
261
            rank, _ = get_dist_info()
262
            if rank == 0:
263
                out = osp.join(cfg.work_dir, f'{name}_pred.pkl')
264
                test_dataset.dump_results(outputs, out)
265
266
                eval_cfg = cfg.get('evaluation', {})
267
                for key in [
268
                        'interval', 'tmpdir', 'start', 'gpu_collect',
269
                        'save_best', 'rule', 'by_epoch', 'broadcast_bn_buffers'
270
                ]:
271
                    eval_cfg.pop(key, None)
272
273
                eval_res = test_dataset.evaluate(outputs, **eval_cfg)
274
                runner.logger.info(f'Testing results of the {name} checkpoint')
275
                for metric_name, val in eval_res.items():
276
                    runner.logger.info(f'{metric_name}: {val:.04f}')