# Copyright (c) OpenMMLab. All rights reserved.
import copy as cp
import os
import os.path as osp
import time
import numpy as np
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook,
build_optimizer, get_dist_info)
from mmcv.runner.hooks import Fp16OptimizerHook
from ..core import (DistEvalHook, EvalHook, OmniSourceDistSamplerSeedHook,
OmniSourceRunner)
from ..datasets import build_dataloader, build_dataset
from ..utils import PreciseBNHook, get_root_logger
from .test import multi_gpu_test
def init_random_seed(seed=None, device='cuda'):
"""Initialize random seed.
If the seed is not set, the seed will be automatically randomized,
and then broadcast to all processes to prevent some potential bugs.
Args:
seed (int, Optional): The seed. Default to None.
device (str): The device where the seed will be put on.
Default to 'cuda'.
Returns:
int: Seed to be used.
"""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
rank, world_size = get_dist_info()
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
dist.broadcast(random_num, src=0)
return random_num.item()
def train_model(model,
dataset,
cfg,
distributed=False,
validate=False,
test=dict(test_best=False, test_last=False),
timestamp=None,
meta=None):
"""Train model entry function.
Args:
model (nn.Module): The model to be trained.
dataset (:obj:`Dataset`): Train dataset.
cfg (dict): The config dict for training.
distributed (bool): Whether to use distributed training.
Default: False.
validate (bool): Whether to do evaluation. Default: False.
test (dict): The testing option, with two keys: test_last & test_best.
The value is True or False, indicating whether to test the
corresponding checkpoint.
Default: dict(test_best=False, test_last=False).
timestamp (str | None): Local time for runner. Default: None.
meta (dict | None): Meta dict to record some important information.
Default: None
"""
logger = get_root_logger(log_level=cfg.log_level)
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
persistent_workers=cfg.data.get('persistent_workers', False),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('train_dataloader', {}))
if cfg.omnisource:
# The option can override videos_per_gpu
train_ratio = cfg.data.get('train_ratio', [1] * len(dataset))
omni_videos_per_gpu = cfg.data.get('omni_videos_per_gpu', None)
if omni_videos_per_gpu is None:
dataloader_settings = [dataloader_setting] * len(dataset)
else:
dataloader_settings = []
for videos_per_gpu in omni_videos_per_gpu:
this_setting = cp.deepcopy(dataloader_setting)
this_setting['videos_per_gpu'] = videos_per_gpu
dataloader_settings.append(this_setting)
data_loaders = [
build_dataloader(ds, **setting)
for ds, setting in zip(dataset, dataloader_settings)
]
else:
data_loaders = [
build_dataloader(ds, **dataloader_setting) for ds in dataset
]
# put model on gpus
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
model = MMDataParallel(
model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
Runner = OmniSourceRunner if cfg.omnisource else EpochBasedRunner
runner = Runner(
model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta)
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config,
cfg.get('momentum_config', None))
if distributed:
if cfg.omnisource:
runner.register_hook(OmniSourceDistSamplerSeedHook())
else:
runner.register_hook(DistSamplerSeedHook())
# precise bn setting
if cfg.get('precise_bn', False):
precise_bn_dataset = build_dataset(cfg.data.train)
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=1, # save memory and time
persistent_workers=cfg.data.get('persistent_workers', False),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
data_loader_precise_bn = build_dataloader(precise_bn_dataset,
**dataloader_setting)
precise_bn_hook = PreciseBNHook(data_loader_precise_bn,
**cfg.get('precise_bn'))
runner.register_hook(precise_bn_hook)
if validate:
eval_cfg = cfg.get('evaluation', {})
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
persistent_workers=cfg.data.get('persistent_workers', False),
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('val_dataloader', {}))
val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
eval_hook = DistEvalHook(val_dataloader, **eval_cfg) if distributed \
else EvalHook(val_dataloader, **eval_cfg)
runner.register_hook(eval_hook)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner_kwargs = dict()
if cfg.omnisource:
runner_kwargs = dict(train_ratio=train_ratio)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs, **runner_kwargs)
dist.barrier()
time.sleep(5)
if test['test_last'] or test['test_best']:
best_ckpt_path = None
if test['test_best']:
ckpt_paths = [x for x in os.listdir(cfg.work_dir) if 'best' in x]
ckpt_paths = [x for x in ckpt_paths if x.endswith('.pth')]
if len(ckpt_paths) == 0:
runner.logger.info('Warning: test_best set, but no ckpt found')
test['test_best'] = False
if not test['test_last']:
return
elif len(ckpt_paths) > 1:
epoch_ids = [
int(x.split('epoch_')[-1][:-4]) for x in ckpt_paths
]
best_ckpt_path = ckpt_paths[np.argmax(epoch_ids)]
else:
best_ckpt_path = ckpt_paths[0]
if best_ckpt_path:
best_ckpt_path = osp.join(cfg.work_dir, best_ckpt_path)
test_dataset = build_dataset(cfg.data.test, dict(test_mode=True))
gpu_collect = cfg.get('evaluation', {}).get('gpu_collect', False)
tmpdir = cfg.get('evaluation', {}).get('tmpdir',
osp.join(cfg.work_dir, 'tmp'))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
persistent_workers=cfg.data.get('persistent_workers', False),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('test_dataloader', {}))
test_dataloader = build_dataloader(test_dataset, **dataloader_setting)
names, ckpts = [], []
if test['test_last']:
names.append('last')
ckpts.append(None)
if test['test_best'] and best_ckpt_path is not None:
names.append('best')
ckpts.append(best_ckpt_path)
for name, ckpt in zip(names, ckpts):
if ckpt is not None:
runner.load_checkpoint(ckpt)
outputs = multi_gpu_test(runner.model, test_dataloader, tmpdir,
gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
out = osp.join(cfg.work_dir, f'{name}_pred.pkl')
test_dataset.dump_results(outputs, out)
eval_cfg = cfg.get('evaluation', {})
for key in [
'interval', 'tmpdir', 'start', 'gpu_collect',
'save_best', 'rule', 'by_epoch', 'broadcast_bn_buffers'
]:
eval_cfg.pop(key, None)
eval_res = test_dataset.evaluate(outputs, **eval_cfg)
runner.logger.info(f'Testing results of the {name} checkpoint')
for metric_name, val in eval_res.items():
runner.logger.info(f'{metric_name}: {val:.04f}')