Diff of /demo/demo.ipynb [000000] .. [6d389a]

Switch to unified view

a b/demo/demo.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {
7
    "pycharm": {
8
     "is_executing": false
9
    }
10
   },
11
   "outputs": [],
12
   "source": [
13
    "from mmaction.apis import init_recognizer, inference_recognizer"
14
   ]
15
  },
16
  {
17
   "cell_type": "code",
18
   "execution_count": 2,
19
   "metadata": {
20
    "pycharm": {
21
     "is_executing": false
22
    }
23
   },
24
   "outputs": [],
25
   "source": [
26
    "config_file = '../configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'\n",
27
    "# download the checkpoint from model zoo and put it in `checkpoints/`\n",
28
    "checkpoint_file = '../checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'"
29
   ]
30
  },
31
  {
32
   "cell_type": "code",
33
   "execution_count": 3,
34
   "metadata": {
35
    "pycharm": {
36
     "is_executing": false
37
    }
38
   },
39
   "outputs": [],
40
   "source": [
41
    "# build the model from a config file and a checkpoint file\n",
42
    "model = init_recognizer(config_file, checkpoint_file, device='cpu')"
43
   ]
44
  },
45
  {
46
   "cell_type": "code",
47
   "execution_count": 4,
48
   "metadata": {
49
    "pycharm": {
50
     "is_executing": false
51
    }
52
   },
53
   "outputs": [],
54
   "source": [
55
    "# test a single video and show the result:\n",
56
    "video = 'demo.mp4'\n",
57
    "label = '../tools/data/kinetics/label_map_k400.txt'\n",
58
    "results = inference_recognizer(model, video)\n",
59
    "\n",
60
    "labels = open(label).readlines()\n",
61
    "labels = [x.strip() for x in labels]\n",
62
    "results = [(labels[k[0]], k[1]) for k in results]"
63
   ]
64
  },
65
  {
66
   "cell_type": "code",
67
   "execution_count": 5,
68
   "metadata": {
69
    "collapsed": false,
70
    "jupyter": {
71
     "outputs_hidden": false
72
    },
73
    "pycharm": {
74
     "is_executing": false,
75
     "name": "#%%\n"
76
    }
77
   },
78
   "outputs": [
79
    {
80
     "name": "stdout",
81
     "output_type": "stream",
82
     "text": [
83
      "arm wrestling:  29.61644\n",
84
      "rock scissors paper:  10.754839\n",
85
      "shaking hands:  9.9084\n",
86
      "clapping:  9.189912\n",
87
      "massaging feet:  8.305307\n"
88
     ]
89
    }
90
   ],
91
   "source": [
92
    "# show the results\n",
93
    "for result in results:\n",
94
    "    print(f'{result[0]}: ', result[1])"
95
   ]
96
  }
97
 ],
98
 "metadata": {
99
  "kernelspec": {
100
   "display_name": "Python 3",
101
   "language": "python",
102
   "name": "python3"
103
  },
104
  "language_info": {
105
   "codemirror_mode": {
106
    "name": "ipython",
107
    "version": 3
108
   },
109
   "file_extension": ".py",
110
   "mimetype": "text/x-python",
111
   "name": "python",
112
   "nbconvert_exporter": "python",
113
   "pygments_lexer": "ipython3",
114
   "version": "3.7.4"
115
  },
116
  "pycharm": {
117
   "stem_cell": {
118
    "cell_type": "raw",
119
    "metadata": {
120
     "collapsed": false
121
    },
122
    "source": []
123
   }
124
  }
125
 },
126
 "nbformat": 4,
127
 "nbformat_minor": 4
128
}