129 lines (128 with data), 2.7 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"from mmaction.apis import init_recognizer, inference_recognizer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"config_file = '../configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'\n",
"# download the checkpoint from model zoo and put it in `checkpoints/`\n",
"checkpoint_file = '../checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"# build the model from a config file and a checkpoint file\n",
"model = init_recognizer(config_file, checkpoint_file, device='cpu')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"source": [
"# test a single video and show the result:\n",
"video = 'demo.mp4'\n",
"label = '../tools/data/kinetics/label_map_k400.txt'\n",
"results = inference_recognizer(model, video)\n",
"\n",
"labels = open(label).readlines()\n",
"labels = [x.strip() for x in labels]\n",
"results = [(labels[k[0]], k[1]) for k in results]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"is_executing": false,
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"arm wrestling: 29.61644\n",
"rock scissors paper: 10.754839\n",
"shaking hands: 9.9084\n",
"clapping: 9.189912\n",
"massaging feet: 8.305307\n"
]
}
],
"source": [
"# show the results\n",
"for result in results:\n",
" print(f'{result[0]}: ', result[1])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}