--- a +++ b/demo/demo.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "pycharm": { + "is_executing": false + } + }, + "outputs": [], + "source": [ + "from mmaction.apis import init_recognizer, inference_recognizer" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "pycharm": { + "is_executing": false + } + }, + "outputs": [], + "source": [ + "config_file = '../configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'\n", + "# download the checkpoint from model zoo and put it in `checkpoints/`\n", + "checkpoint_file = '../checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "pycharm": { + "is_executing": false + } + }, + "outputs": [], + "source": [ + "# build the model from a config file and a checkpoint file\n", + "model = init_recognizer(config_file, checkpoint_file, device='cpu')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "pycharm": { + "is_executing": false + } + }, + "outputs": [], + "source": [ + "# test a single video and show the result:\n", + "video = 'demo.mp4'\n", + "label = '../tools/data/kinetics/label_map_k400.txt'\n", + "results = inference_recognizer(model, video)\n", + "\n", + "labels = open(label).readlines()\n", + "labels = [x.strip() for x in labels]\n", + "results = [(labels[k[0]], k[1]) for k in results]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "is_executing": false, + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arm wrestling: 29.61644\n", + "rock scissors paper: 10.754839\n", + "shaking hands: 9.9084\n", + "clapping: 9.189912\n", + "massaging feet: 8.305307\n" + ] + } + ], + "source": [ + "# show the results\n", + "for result in results:\n", + " print(f'{result[0]}: ', result[1])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "pycharm": { + "stem_cell": { + "cell_type": "raw", + "metadata": { + "collapsed": false + }, + "source": [] + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}