|
a |
|
b/src/experiment.py |
|
|
1 |
from collections import OrderedDict |
|
|
2 |
import torch |
|
|
3 |
import torch.nn as nn |
|
|
4 |
from torch.utils.data import ConcatDataset |
|
|
5 |
import random |
|
|
6 |
from catalyst.dl.experiment import ConfigExperiment |
|
|
7 |
from dataset import * |
|
|
8 |
from augmentation import train_aug, valid_aug |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
class Experiment(ConfigExperiment): |
|
|
12 |
def _postprocess_model_for_stage(self, stage: str, model: nn.Module): |
|
|
13 |
|
|
|
14 |
import warnings |
|
|
15 |
warnings.filterwarnings("ignore") |
|
|
16 |
|
|
|
17 |
random.seed(2411) |
|
|
18 |
np.random.seed(2411) |
|
|
19 |
torch.manual_seed(2411) |
|
|
20 |
|
|
|
21 |
model_ = model |
|
|
22 |
if isinstance(model, torch.nn.DataParallel): |
|
|
23 |
model_ = model_.module |
|
|
24 |
|
|
|
25 |
if stage == "warmup": |
|
|
26 |
if hasattr(model_, 'freeze'): |
|
|
27 |
model_.freeze(model_) |
|
|
28 |
print("Freeze backbone model using freeze method !!!") |
|
|
29 |
else: |
|
|
30 |
for param in model_.parameters(): |
|
|
31 |
param.requires_grad = False |
|
|
32 |
|
|
|
33 |
for param in model_.get_classifier().parameters(): |
|
|
34 |
param.requires_grad = True |
|
|
35 |
print("Freeze backbone model !!!") |
|
|
36 |
|
|
|
37 |
else: |
|
|
38 |
if hasattr(model_, 'unfreeze'): |
|
|
39 |
model_.unfreeze(model_) |
|
|
40 |
print("Unfreeze backbone model using unfreeze method !!!") |
|
|
41 |
else: |
|
|
42 |
for param in model_.parameters(): |
|
|
43 |
param.requires_grad = True |
|
|
44 |
|
|
|
45 |
print("Unfreeze backbone model !!!") |
|
|
46 |
# |
|
|
47 |
# import apex |
|
|
48 |
# model_ = apex.parallel.convert_syncbn_model(model_) |
|
|
49 |
|
|
|
50 |
return model_ |
|
|
51 |
|
|
|
52 |
def get_datasets(self, stage: str, **kwargs): |
|
|
53 |
datasets = OrderedDict() |
|
|
54 |
|
|
|
55 |
""" |
|
|
56 |
image_key: 'id' |
|
|
57 |
label_key: 'attribute_ids' |
|
|
58 |
""" |
|
|
59 |
|
|
|
60 |
image_size = kwargs.get("image_size", [224, 224]) |
|
|
61 |
train_csv = kwargs.get('train_csv', None) |
|
|
62 |
valid_csv = kwargs.get('valid_csv', None) |
|
|
63 |
with_any = kwargs.get('with_any', True) |
|
|
64 |
dataset_type = kwargs.get('dataset_type', 'RSNADataset') |
|
|
65 |
image_type = kwargs.get('image_type', 'jpg') |
|
|
66 |
normalization = kwargs.get('normalization', True) |
|
|
67 |
root = kwargs.get('root', None) |
|
|
68 |
|
|
|
69 |
print(f"Image Size: {image_size}") |
|
|
70 |
|
|
|
71 |
if train_csv: |
|
|
72 |
transform = train_aug(image_size) |
|
|
73 |
if dataset_type == 'RSNADataset': |
|
|
74 |
train_set = RSNADataset( |
|
|
75 |
csv_file=train_csv, |
|
|
76 |
root=root, |
|
|
77 |
with_any=with_any, |
|
|
78 |
transform=transform, |
|
|
79 |
mode='train', |
|
|
80 |
image_type=image_type |
|
|
81 |
) |
|
|
82 |
elif dataset_type == 'RSNAMultiWindowsDataset': |
|
|
83 |
train_set = RSNAMultiWindowsDataset( |
|
|
84 |
csv_file=train_csv, |
|
|
85 |
root=root, |
|
|
86 |
with_any=with_any, |
|
|
87 |
transform=transform |
|
|
88 |
) |
|
|
89 |
elif dataset_type == 'RSNADicomDataset': |
|
|
90 |
train_set = RSNADicomDataset( |
|
|
91 |
csv_file=train_csv, |
|
|
92 |
root=root, |
|
|
93 |
with_any=with_any, |
|
|
94 |
transform=transform |
|
|
95 |
) |
|
|
96 |
elif dataset_type == "RSNARandomWindowDataset": |
|
|
97 |
train_set = RSNARandomWindowDataset( |
|
|
98 |
csv_file=train_csv, |
|
|
99 |
root=root, |
|
|
100 |
with_any=with_any, |
|
|
101 |
transform=transform |
|
|
102 |
) |
|
|
103 |
else: |
|
|
104 |
raise("No Dataset: {}".format(dataset_type)) |
|
|
105 |
datasets["train"] = train_set |
|
|
106 |
|
|
|
107 |
if valid_csv: |
|
|
108 |
transform = valid_aug(image_size) |
|
|
109 |
if dataset_type == 'RSNADataset': |
|
|
110 |
valid_set = RSNADataset( |
|
|
111 |
csv_file=valid_csv, |
|
|
112 |
root=root, |
|
|
113 |
with_any=with_any, |
|
|
114 |
transform=transform, |
|
|
115 |
mode='valid', |
|
|
116 |
image_type=image_type |
|
|
117 |
) |
|
|
118 |
elif dataset_type == 'RSNAMultiWindowsDataset': |
|
|
119 |
valid_set = RSNAMultiWindowsDataset( |
|
|
120 |
csv_file=valid_csv, |
|
|
121 |
root=root, |
|
|
122 |
with_any=with_any, |
|
|
123 |
transform=transform |
|
|
124 |
) |
|
|
125 |
elif dataset_type == 'RSNADicomDataset': |
|
|
126 |
valid_set = RSNADicomDataset( |
|
|
127 |
csv_file=valid_csv, |
|
|
128 |
root=root, |
|
|
129 |
with_any=with_any, |
|
|
130 |
transform=transform, |
|
|
131 |
mode='valid' |
|
|
132 |
) |
|
|
133 |
elif dataset_type == "RSNARandomWindowDataset": |
|
|
134 |
valid_set = RSNARandomWindowDataset( |
|
|
135 |
csv_file=valid_csv, |
|
|
136 |
root=root, |
|
|
137 |
with_any=with_any, |
|
|
138 |
transform=transform, |
|
|
139 |
mode='valid' |
|
|
140 |
) |
|
|
141 |
else: |
|
|
142 |
raise("No Dataset: {}".format(dataset_type)) |
|
|
143 |
datasets["valid"] = valid_set |
|
|
144 |
|
|
|
145 |
return datasets |