[95f789]: / src / experiment.py

Download this file

146 lines (128 with data), 5.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.utils.data import ConcatDataset
import random
from catalyst.dl.experiment import ConfigExperiment
from dataset import *
from augmentation import train_aug, valid_aug
class Experiment(ConfigExperiment):
def _postprocess_model_for_stage(self, stage: str, model: nn.Module):
import warnings
warnings.filterwarnings("ignore")
random.seed(2411)
np.random.seed(2411)
torch.manual_seed(2411)
model_ = model
if isinstance(model, torch.nn.DataParallel):
model_ = model_.module
if stage == "warmup":
if hasattr(model_, 'freeze'):
model_.freeze(model_)
print("Freeze backbone model using freeze method !!!")
else:
for param in model_.parameters():
param.requires_grad = False
for param in model_.get_classifier().parameters():
param.requires_grad = True
print("Freeze backbone model !!!")
else:
if hasattr(model_, 'unfreeze'):
model_.unfreeze(model_)
print("Unfreeze backbone model using unfreeze method !!!")
else:
for param in model_.parameters():
param.requires_grad = True
print("Unfreeze backbone model !!!")
#
# import apex
# model_ = apex.parallel.convert_syncbn_model(model_)
return model_
def get_datasets(self, stage: str, **kwargs):
datasets = OrderedDict()
"""
image_key: 'id'
label_key: 'attribute_ids'
"""
image_size = kwargs.get("image_size", [224, 224])
train_csv = kwargs.get('train_csv', None)
valid_csv = kwargs.get('valid_csv', None)
with_any = kwargs.get('with_any', True)
dataset_type = kwargs.get('dataset_type', 'RSNADataset')
image_type = kwargs.get('image_type', 'jpg')
normalization = kwargs.get('normalization', True)
root = kwargs.get('root', None)
print(f"Image Size: {image_size}")
if train_csv:
transform = train_aug(image_size)
if dataset_type == 'RSNADataset':
train_set = RSNADataset(
csv_file=train_csv,
root=root,
with_any=with_any,
transform=transform,
mode='train',
image_type=image_type
)
elif dataset_type == 'RSNAMultiWindowsDataset':
train_set = RSNAMultiWindowsDataset(
csv_file=train_csv,
root=root,
with_any=with_any,
transform=transform
)
elif dataset_type == 'RSNADicomDataset':
train_set = RSNADicomDataset(
csv_file=train_csv,
root=root,
with_any=with_any,
transform=transform
)
elif dataset_type == "RSNARandomWindowDataset":
train_set = RSNARandomWindowDataset(
csv_file=train_csv,
root=root,
with_any=with_any,
transform=transform
)
else:
raise("No Dataset: {}".format(dataset_type))
datasets["train"] = train_set
if valid_csv:
transform = valid_aug(image_size)
if dataset_type == 'RSNADataset':
valid_set = RSNADataset(
csv_file=valid_csv,
root=root,
with_any=with_any,
transform=transform,
mode='valid',
image_type=image_type
)
elif dataset_type == 'RSNAMultiWindowsDataset':
valid_set = RSNAMultiWindowsDataset(
csv_file=valid_csv,
root=root,
with_any=with_any,
transform=transform
)
elif dataset_type == 'RSNADicomDataset':
valid_set = RSNADicomDataset(
csv_file=valid_csv,
root=root,
with_any=with_any,
transform=transform,
mode='valid'
)
elif dataset_type == "RSNARandomWindowDataset":
valid_set = RSNARandomWindowDataset(
csv_file=valid_csv,
root=root,
with_any=with_any,
transform=transform,
mode='valid'
)
else:
raise("No Dataset: {}".format(dataset_type))
datasets["valid"] = valid_set
return datasets