--- a +++ b/experiments/bleed_exp/old_configs.py @@ -0,0 +1,347 @@ +#!/usr/bin/env python +# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +import sys +import os +sys.path.append(os.path.dirname(os.path.realpath(__file__))) +import numpy as np +from default_configs import DefaultConfigs + +class configs(DefaultConfigs): + + def __init__(self, server_env=None): + + ######################### + # Preprocessing # + ######################### + + self.root_dir = '/home/marinb02/data/bodyBleed/' + self.raw_data_dir = '{}raw_data/LPpos'.format(self.root_dir) + self.pp_dir = '{}preprocessed_data/pp_LPpos'.format(self.root_dir) + self.target_spacing = (1.0, 1.0, 1.0) + + ######################### + # I/O # + ######################### + + + # one out of [2, 3]. dimension the model operates in. + self.dim = 3 + + # one out of ['mrcnn', 'retina_net', 'retina_unet', 'detection_unet', 'ufrcnn', 'detection_unet']. + self.model = 'mrcnn' + + DefaultConfigs.__init__(self, self.model, server_env, self.dim) + + # int [0 < dataset_size]. select n patients from dataset for prototyping. If None, all data is used. + self.select_prototype_subset = None + + # path to preprocessed data. + self.pp_name = 'pp_LPpos' + self.input_df_name = 'info_df.pickle' + self.pp_data_path = '/home/aisinai/data/preprocessed_data/{}'.format(self.pp_name) + self.pp_test_data_path = '/home/aisinai/data/preprocessed_data/pp_LargePatches' #change if test_data in separate folder. + self.pp_test_name = 'TwentyEight_128^3' + # settings for deployment in cloud. + if server_env: + # path to preprocessed data. + self.pp_name = 'pp_fg_slices' + self.crop_name = 'pp_fg_slices_packed' + self.pp_data_path = '/path/to/preprocessed/data/{}/{}'.format(self.pp_name, self.crop_name) + self.pp_test_data_path = self.pp_data_path + self.select_prototype_subset = None + + ######################### + # Data Loader # + ######################### + + # select modalities from preprocessed data + self.channels = [0] + self.n_channels = len(self.channels) + + # patch_size to be used for training. pre_crop_size is the patch_size before data augmentation. + self.pre_crop_size_2D = [300, 300] + self.patch_size_2D = [288, 288] + self.pre_crop_size_3D = [256, 256, 256] + self.patch_size_3D = [128, 128, 128] + self.patch_size = self.patch_size_2D if self.dim == 2 else self.patch_size_3D + self.pre_crop_size = self.pre_crop_size_2D if self.dim == 2 else self.pre_crop_size_3D + + # ratio of free sampled batch elements before class balancing is triggered + # (>0 to include "empty"/background patches.) + self.batch_sample_slack = 0.1 + + # set 2D network to operate in 3D images. + self.merge_2D_to_3D_preds = False + + # for 2D implementation. feed +/- n neighbouring slices into channel dimension. set to None for no context. + self.n_3D_context = None + if self.n_3D_context is not None and self.dim == 2: + self.n_channels *= (self.n_3D_context * 2 + 1) + + + ######################### + # Architecture # + ######################### + + self.start_filts = 48 if self.dim == 2 else 18 + self.end_filts = self.start_filts * 4 if self.dim == 2 else self.start_filts * 2 + self.res_architecture = 'resnet101' # 'resnet101' , 'resnet50' + self.norm = None # one of None, 'instance_norm', 'batch_norm' + self.weight_decay = 0 + + # one of 'xavier_uniform', 'xavier_normal', or 'kaiming_normal', None (=default = 'kaiming_uniform') + self.weight_init = None + + ######################### + # Schedule / Selection # + ######################### + + self.num_epochs = 100 + self.num_train_batches = 200 if self.dim == 2 else 100 + self.batch_size = 20 if self.dim == 2 else 8 + + self.do_validation = True + # decide whether to validate on entire patient volumes (like testing) or sampled patches (like training) + # the former is morge accurate, while the latter is faster (depending on volume size) + self.val_mode = 'val_sampling' # one of 'val_sampling' , 'val_patient' + if self.val_mode == 'val_patient': + self.max_val_patients = 50 # if 'None' iterates over entire val_set once. + if self.val_mode == 'val_sampling': + self.num_val_batches = 50 + + self.optimizer = "Adam" + + # set dynamic_lr_scheduling to True to apply LR scheduling with below settings. + self.dynamic_lr_scheduling = False + self.lr_decay_factor = 0.25 + self.scheduling_patience = np.ceil(16000 / (self.num_train_batches * self.batch_size)) + self.scheduling_criterion = 'malignant_ap' + self.scheduling_mode = 'min' if "loss" in self.scheduling_criterion else 'max' + + + ######################### + # Testing / Plotting # + ######################### + + # set the top-n-epochs to be saved for temporal averaging in testing. + self.save_n_models = 5 + self.test_n_epochs = 5 + # set a minimum epoch number for saving in case of instabilities in the first phase of training. + self.min_save_thresh = 0 if self.dim == 2 else 0 + + self.report_score_level = ['patient', 'rois'] # choose list from 'patient', 'rois' + #self.class_dict = {1: 'negative', 2: 'positive'} # 0 is background. + self.class_dict = {1: 'positive'} # 0 is background + self.patient_class_of_interest = 1 # patient metrics are only plotted for one class. + self.ap_match_ious = [0.1] # list of ious to be evaluated for ap-scoring. + + #self.model_selection_criteria = ['benign_ap', 'malignant_ap'] # criteria to average over for saving epochs. + self.model_selection_criteria = ['positive_ap'] + self.min_det_thresh = 0.6 # minimum confidence value to select predictions for evaluation. + + # threshold for clustering predictions together (wcs = weighted cluster scoring). + # needs to be >= the expected overlap of predictions coming from one model (typically NMS threshold). + # if too high, preds of the same object are separate clusters. + self.wcs_iou = 1e-5 + + self.plot_prediction_histograms = True + self.plot_stat_curves = False + + ######################### + # Data Augmentation # + ######################### + + self.da_kwargs={ + 'do_elastic_deform': True, + 'alpha':(0., 1500.), + 'sigma':(30., 50.), + 'do_rotation':True, + 'angle_x': (0., 2 * np.pi), + 'angle_y': (0., 0), + 'angle_z': (0., 0), + 'do_scale': True, + 'scale':(0.8, 1.1), + 'random_crop':False, + 'rand_crop_dist': (self.patch_size[0] / 2. - 3, self.patch_size[1] / 2. - 3), + 'border_mode_data': 'constant', + 'border_cval_data': 0, + 'order_data': 1 + } + + if self.dim == 3: + self.da_kwargs['do_elastic_deform'] = False + self.da_kwargs['angle_x'] = (0, 0.0) + self.da_kwargs['angle_y'] = (0, 0.0) #must be 0!! + self.da_kwargs['angle_z'] = (0., 2 * np.pi) + + + ######################### + # Add model specifics # + ######################### + + {'detection_unet': self.add_det_unet_configs, + 'mrcnn': self.add_mrcnn_configs, + 'ufrcnn': self.add_mrcnn_configs, + 'retina_net': self.add_mrcnn_configs, + 'retina_unet': self.add_mrcnn_configs, + }[self.model]() + + + def add_det_unet_configs(self): + + self.learning_rate = [1e-4] * self.num_epochs + + # aggregation from pixel perdiction to object scores (connected component). One of ['max', 'median'] + self.aggregation_operation = 'max' + + # max number of roi candidates to identify per batch element and class. + self.n_roi_candidates = 10 if self.dim == 2 else 30 + + # loss mode: either weighted cross entropy ('wce'), batch-wise dice loss ('dice), or the sum of both ('dice_wce') + self.seg_loss_mode = 'dice_wce' + + # if <1, false positive predictions in foreground are penalized less. + self.fp_dice_weight = 1 if self.dim == 2 else 1 + + self.wce_weights = [1, 1, 1] + self.detection_min_confidence = self.min_det_thresh + + # if 'True', loss distinguishes all classes, else only foreground vs. background (class agnostic). + self.class_specific_seg_flag = False + self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 + self.head_classes = self.num_seg_classes + + def add_mrcnn_configs(self): + + # learning rate is a list with one entry per epoch. + self.learning_rate = [1e-4] * self.num_epochs + + # disable the re-sampling of mask proposals to original size for speed-up. + # since evaluation is detection-driven (box-matching) and not instance segmentation-driven (iou-matching), + # mask-outputs are optional. + self.return_masks_in_val = True + self.return_masks_in_test = True + + # set number of proposal boxes to plot after each epoch. + self.n_plot_rpn_props = 5 if self.dim == 2 else 30 + + # number of classes for head networks: n_foreground_classes + 1 (background) + self.head_classes = 2 + + # seg_classes hier refers to the first stage classifier (RPN) + self.num_seg_classes = 1 # foreground vs. background + + # feature map strides per pyramid level are inferred from architecture. + self.backbone_strides = {'xy': [4, 8, 16, 32], 'z': [1, 2, 4, 8]} + + # anchor scales are chosen according to expected object sizes in data set. Default uses only one anchor scale + # per pyramid level. (outer list are pyramid levels (corresponding to BACKBONE_STRIDES), inner list are scales per level.) + self.rpn_anchor_scales = {'xy': [[8], [16], [32], [64]], 'z': [[2], [4], [8], [16]]} + + # choose which pyramid levels to extract features from: P2: 0, P3: 1, P4: 2, P5: 3. + self.pyramid_levels = [0, 1, 2, 3] + + # number of feature maps in rpn. typically lowered in 3D to save gpu-memory. + self.n_rpn_features = 512 if self.dim == 2 else 96 + + # anchor ratios and strides per position in feature maps. + self.rpn_anchor_ratios = [0.5, 1, 2] + self.rpn_anchor_stride = 1 + + # Threshold for first stage (RPN) non-maximum suppression (NMS): LOWER == HARDER SELECTION + self.rpn_nms_threshold = 0.7 if self.dim == 2 else 0.2 + + # loss sampling settings. + self.rpn_train_anchors_per_image = 6 #per batch element + self.train_rois_per_image = 6 #per batch element + self.roi_positive_ratio = 0.5 + self.anchor_matching_iou = 0.7 + + # factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining). + # poolsize to draw top-k candidates from will be shem_poolsize * n_negative_samples. + self.shem_poolsize = 10 + + self.pool_size = (7, 7) if self.dim == 2 else (7, 7, 3) + self.mask_pool_size = (14, 14) if self.dim == 2 else (14, 14, 5) + self.mask_shape = (28, 28) if self.dim == 2 else (28, 28, 10) + + self.rpn_bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) + self.bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) + self.window = np.array([0, 0, self.patch_size[0], self.patch_size[1], 0, self.patch_size_3D[2]]) + self.scale = np.array([self.patch_size[0], self.patch_size[1], self.patch_size[0], self.patch_size[1], + self.patch_size_3D[2], self.patch_size_3D[2]]) + if self.dim == 2: + self.rpn_bbox_std_dev = self.rpn_bbox_std_dev[:4] + self.bbox_std_dev = self.bbox_std_dev[:4] + self.window = self.window[:4] + self.scale = self.scale[:4] + + # pre-selection in proposal-layer (stage 1) for NMS-speedup. applied per batch element. + self.pre_nms_limit = 3000 if self.dim == 2 else 6000 + + # n_proposals to be selected after NMS per batch element. too high numbers blow up memory if "detect_while_training" is True, + # since proposals of the entire batch are forwarded through second stage in as one "batch". + self.roi_chunk_size = 2500 if self.dim == 2 else 600 + self.post_nms_rois_training = 500 if self.dim == 2 else 75 + self.post_nms_rois_inference = 500 + + # Final selection of detections (refine_detections) + self.model_max_instances_per_batch_element = 10 if self.dim == 2 else 30 # per batch element and class. + self.detection_nms_threshold = 1e-5 # needs to be > 0, otherwise all predictions are one cluster. + self.model_min_confidence = 0.6 + + if self.dim == 2: + self.backbone_shapes = np.array( + [[int(np.ceil(self.patch_size[0] / stride)), + int(np.ceil(self.patch_size[1] / stride))] + for stride in self.backbone_strides['xy']]) + else: + self.backbone_shapes = np.array( + [[int(np.ceil(self.patch_size[0] / stride)), + int(np.ceil(self.patch_size[1] / stride)), + int(np.ceil(self.patch_size[2] / stride_z))] + for stride, stride_z in zip(self.backbone_strides['xy'], self.backbone_strides['z'] + )]) + + if self.model == 'ufrcnn': + self.operate_stride1 = True + self.class_specific_seg_flag = False + self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 + self.frcnn_mode = True + + if self.model == 'retina_net' or self.model == 'retina_unet' or self.model == 'prob_detector': + # implement extra anchor-scales according to retina-net publication. + self.rpn_anchor_scales['xy'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in + self.rpn_anchor_scales['xy']] + self.rpn_anchor_scales['z'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in + self.rpn_anchor_scales['z']] + self.n_anchors_per_pos = len(self.rpn_anchor_ratios) * 3 + + self.n_rpn_features = 256 if self.dim == 2 else 64 + + # pre-selection of detections for NMS-speedup. per entire batch. + self.pre_nms_limit = 10000 if self.dim == 2 else 50000 + + # anchor matching iou is lower than in Mask R-CNN according to https://arxiv.org/abs/1708.02002 + self.anchor_matching_iou = 0.5 + + # if 'True', seg loss distinguishes all classes, else only foreground vs. background (class agnostic). + self.class_specific_seg_flag = False + self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 + + if self.model == 'retina_unet': + self.operate_stride1 = True