#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import numpy as np
from default_configs import DefaultConfigs
class configs(DefaultConfigs):
def __init__(self, server_env=None):
#########################
# Preprocessing #
#########################
self.root_dir = '/home/marinb02/data/bodyBleed/'
self.raw_data_dir = '{}raw_data/LPpos'.format(self.root_dir)
self.pp_dir = '{}preprocessed_data/pp_LPpos'.format(self.root_dir)
self.target_spacing = (1.0, 1.0, 1.0)
#########################
# I/O #
#########################
# one out of [2, 3]. dimension the model operates in.
self.dim = 3
# one out of ['mrcnn', 'retina_net', 'retina_unet', 'detection_unet', 'ufrcnn', 'detection_unet'].
self.model = 'mrcnn'
DefaultConfigs.__init__(self, self.model, server_env, self.dim)
# int [0 < dataset_size]. select n patients from dataset for prototyping. If None, all data is used.
self.select_prototype_subset = None
# path to preprocessed data.
self.pp_name = 'pp_LPpos'
self.input_df_name = 'info_df.pickle'
self.pp_data_path = '/home/aisinai/data/preprocessed_data/{}'.format(self.pp_name)
self.pp_test_data_path = '/home/aisinai/data/preprocessed_data/pp_LargePatches' #change if test_data in separate folder.
self.pp_test_name = 'TwentyEight_128^3'
# settings for deployment in cloud.
if server_env:
# path to preprocessed data.
self.pp_name = 'pp_fg_slices'
self.crop_name = 'pp_fg_slices_packed'
self.pp_data_path = '/path/to/preprocessed/data/{}/{}'.format(self.pp_name, self.crop_name)
self.pp_test_data_path = self.pp_data_path
self.select_prototype_subset = None
#########################
# Data Loader #
#########################
# select modalities from preprocessed data
self.channels = [0]
self.n_channels = len(self.channels)
# patch_size to be used for training. pre_crop_size is the patch_size before data augmentation.
self.pre_crop_size_2D = [300, 300]
self.patch_size_2D = [288, 288]
self.pre_crop_size_3D = [256, 256, 256]
self.patch_size_3D = [128, 128, 128]
self.patch_size = self.patch_size_2D if self.dim == 2 else self.patch_size_3D
self.pre_crop_size = self.pre_crop_size_2D if self.dim == 2 else self.pre_crop_size_3D
# ratio of free sampled batch elements before class balancing is triggered
# (>0 to include "empty"/background patches.)
self.batch_sample_slack = 0.1
# set 2D network to operate in 3D images.
self.merge_2D_to_3D_preds = False
# for 2D implementation. feed +/- n neighbouring slices into channel dimension. set to None for no context.
self.n_3D_context = None
if self.n_3D_context is not None and self.dim == 2:
self.n_channels *= (self.n_3D_context * 2 + 1)
#########################
# Architecture #
#########################
self.start_filts = 48 if self.dim == 2 else 18
self.end_filts = self.start_filts * 4 if self.dim == 2 else self.start_filts * 2
self.res_architecture = 'resnet101' # 'resnet101' , 'resnet50'
self.norm = None # one of None, 'instance_norm', 'batch_norm'
self.weight_decay = 0
# one of 'xavier_uniform', 'xavier_normal', or 'kaiming_normal', None (=default = 'kaiming_uniform')
self.weight_init = None
#########################
# Schedule / Selection #
#########################
self.num_epochs = 100
self.num_train_batches = 200 if self.dim == 2 else 100
self.batch_size = 20 if self.dim == 2 else 8
self.do_validation = True
# decide whether to validate on entire patient volumes (like testing) or sampled patches (like training)
# the former is morge accurate, while the latter is faster (depending on volume size)
self.val_mode = 'val_sampling' # one of 'val_sampling' , 'val_patient'
if self.val_mode == 'val_patient':
self.max_val_patients = 50 # if 'None' iterates over entire val_set once.
if self.val_mode == 'val_sampling':
self.num_val_batches = 50
self.optimizer = "Adam"
# set dynamic_lr_scheduling to True to apply LR scheduling with below settings.
self.dynamic_lr_scheduling = False
self.lr_decay_factor = 0.25
self.scheduling_patience = np.ceil(16000 / (self.num_train_batches * self.batch_size))
self.scheduling_criterion = 'malignant_ap'
self.scheduling_mode = 'min' if "loss" in self.scheduling_criterion else 'max'
#########################
# Testing / Plotting #
#########################
# set the top-n-epochs to be saved for temporal averaging in testing.
self.save_n_models = 5
self.test_n_epochs = 5
# set a minimum epoch number for saving in case of instabilities in the first phase of training.
self.min_save_thresh = 0 if self.dim == 2 else 0
self.report_score_level = ['patient', 'rois'] # choose list from 'patient', 'rois'
#self.class_dict = {1: 'negative', 2: 'positive'} # 0 is background.
self.class_dict = {1: 'positive'} # 0 is background
self.patient_class_of_interest = 1 # patient metrics are only plotted for one class.
self.ap_match_ious = [0.1] # list of ious to be evaluated for ap-scoring.
#self.model_selection_criteria = ['benign_ap', 'malignant_ap'] # criteria to average over for saving epochs.
self.model_selection_criteria = ['positive_ap']
self.min_det_thresh = 0.6 # minimum confidence value to select predictions for evaluation.
# threshold for clustering predictions together (wcs = weighted cluster scoring).
# needs to be >= the expected overlap of predictions coming from one model (typically NMS threshold).
# if too high, preds of the same object are separate clusters.
self.wcs_iou = 1e-5
self.plot_prediction_histograms = True
self.plot_stat_curves = False
#########################
# Data Augmentation #
#########################
self.da_kwargs={
'do_elastic_deform': True,
'alpha':(0., 1500.),
'sigma':(30., 50.),
'do_rotation':True,
'angle_x': (0., 2 * np.pi),
'angle_y': (0., 0),
'angle_z': (0., 0),
'do_scale': True,
'scale':(0.8, 1.1),
'random_crop':False,
'rand_crop_dist': (self.patch_size[0] / 2. - 3, self.patch_size[1] / 2. - 3),
'border_mode_data': 'constant',
'border_cval_data': 0,
'order_data': 1
}
if self.dim == 3:
self.da_kwargs['do_elastic_deform'] = False
self.da_kwargs['angle_x'] = (0, 0.0)
self.da_kwargs['angle_y'] = (0, 0.0) #must be 0!!
self.da_kwargs['angle_z'] = (0., 2 * np.pi)
#########################
# Add model specifics #
#########################
{'detection_unet': self.add_det_unet_configs,
'mrcnn': self.add_mrcnn_configs,
'ufrcnn': self.add_mrcnn_configs,
'retina_net': self.add_mrcnn_configs,
'retina_unet': self.add_mrcnn_configs,
}[self.model]()
def add_det_unet_configs(self):
self.learning_rate = [1e-4] * self.num_epochs
# aggregation from pixel perdiction to object scores (connected component). One of ['max', 'median']
self.aggregation_operation = 'max'
# max number of roi candidates to identify per batch element and class.
self.n_roi_candidates = 10 if self.dim == 2 else 30
# loss mode: either weighted cross entropy ('wce'), batch-wise dice loss ('dice), or the sum of both ('dice_wce')
self.seg_loss_mode = 'dice_wce'
# if <1, false positive predictions in foreground are penalized less.
self.fp_dice_weight = 1 if self.dim == 2 else 1
self.wce_weights = [1, 1, 1]
self.detection_min_confidence = self.min_det_thresh
# if 'True', loss distinguishes all classes, else only foreground vs. background (class agnostic).
self.class_specific_seg_flag = False
self.num_seg_classes = 3 if self.class_specific_seg_flag else 2
self.head_classes = self.num_seg_classes
def add_mrcnn_configs(self):
# learning rate is a list with one entry per epoch.
self.learning_rate = [1e-4] * self.num_epochs
# disable the re-sampling of mask proposals to original size for speed-up.
# since evaluation is detection-driven (box-matching) and not instance segmentation-driven (iou-matching),
# mask-outputs are optional.
self.return_masks_in_val = True
self.return_masks_in_test = True
# set number of proposal boxes to plot after each epoch.
self.n_plot_rpn_props = 5 if self.dim == 2 else 30
# number of classes for head networks: n_foreground_classes + 1 (background)
self.head_classes = 2
# seg_classes hier refers to the first stage classifier (RPN)
self.num_seg_classes = 1 # foreground vs. background
# feature map strides per pyramid level are inferred from architecture.
self.backbone_strides = {'xy': [4, 8, 16, 32], 'z': [1, 2, 4, 8]}
# anchor scales are chosen according to expected object sizes in data set. Default uses only one anchor scale
# per pyramid level. (outer list are pyramid levels (corresponding to BACKBONE_STRIDES), inner list are scales per level.)
self.rpn_anchor_scales = {'xy': [[8], [16], [32], [64]], 'z': [[2], [4], [8], [16]]}
# choose which pyramid levels to extract features from: P2: 0, P3: 1, P4: 2, P5: 3.
self.pyramid_levels = [0, 1, 2, 3]
# number of feature maps in rpn. typically lowered in 3D to save gpu-memory.
self.n_rpn_features = 512 if self.dim == 2 else 96
# anchor ratios and strides per position in feature maps.
self.rpn_anchor_ratios = [0.5, 1, 2]
self.rpn_anchor_stride = 1
# Threshold for first stage (RPN) non-maximum suppression (NMS): LOWER == HARDER SELECTION
self.rpn_nms_threshold = 0.7 if self.dim == 2 else 0.2
# loss sampling settings.
self.rpn_train_anchors_per_image = 6 #per batch element
self.train_rois_per_image = 6 #per batch element
self.roi_positive_ratio = 0.5
self.anchor_matching_iou = 0.7
# factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining).
# poolsize to draw top-k candidates from will be shem_poolsize * n_negative_samples.
self.shem_poolsize = 10
self.pool_size = (7, 7) if self.dim == 2 else (7, 7, 3)
self.mask_pool_size = (14, 14) if self.dim == 2 else (14, 14, 5)
self.mask_shape = (28, 28) if self.dim == 2 else (28, 28, 10)
self.rpn_bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2])
self.bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2])
self.window = np.array([0, 0, self.patch_size[0], self.patch_size[1], 0, self.patch_size_3D[2]])
self.scale = np.array([self.patch_size[0], self.patch_size[1], self.patch_size[0], self.patch_size[1],
self.patch_size_3D[2], self.patch_size_3D[2]])
if self.dim == 2:
self.rpn_bbox_std_dev = self.rpn_bbox_std_dev[:4]
self.bbox_std_dev = self.bbox_std_dev[:4]
self.window = self.window[:4]
self.scale = self.scale[:4]
# pre-selection in proposal-layer (stage 1) for NMS-speedup. applied per batch element.
self.pre_nms_limit = 3000 if self.dim == 2 else 6000
# n_proposals to be selected after NMS per batch element. too high numbers blow up memory if "detect_while_training" is True,
# since proposals of the entire batch are forwarded through second stage in as one "batch".
self.roi_chunk_size = 2500 if self.dim == 2 else 600
self.post_nms_rois_training = 500 if self.dim == 2 else 75
self.post_nms_rois_inference = 500
# Final selection of detections (refine_detections)
self.model_max_instances_per_batch_element = 10 if self.dim == 2 else 30 # per batch element and class.
self.detection_nms_threshold = 1e-5 # needs to be > 0, otherwise all predictions are one cluster.
self.model_min_confidence = 0.6
if self.dim == 2:
self.backbone_shapes = np.array(
[[int(np.ceil(self.patch_size[0] / stride)),
int(np.ceil(self.patch_size[1] / stride))]
for stride in self.backbone_strides['xy']])
else:
self.backbone_shapes = np.array(
[[int(np.ceil(self.patch_size[0] / stride)),
int(np.ceil(self.patch_size[1] / stride)),
int(np.ceil(self.patch_size[2] / stride_z))]
for stride, stride_z in zip(self.backbone_strides['xy'], self.backbone_strides['z']
)])
if self.model == 'ufrcnn':
self.operate_stride1 = True
self.class_specific_seg_flag = False
self.num_seg_classes = 3 if self.class_specific_seg_flag else 2
self.frcnn_mode = True
if self.model == 'retina_net' or self.model == 'retina_unet' or self.model == 'prob_detector':
# implement extra anchor-scales according to retina-net publication.
self.rpn_anchor_scales['xy'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in
self.rpn_anchor_scales['xy']]
self.rpn_anchor_scales['z'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in
self.rpn_anchor_scales['z']]
self.n_anchors_per_pos = len(self.rpn_anchor_ratios) * 3
self.n_rpn_features = 256 if self.dim == 2 else 64
# pre-selection of detections for NMS-speedup. per entire batch.
self.pre_nms_limit = 10000 if self.dim == 2 else 50000
# anchor matching iou is lower than in Mask R-CNN according to https://arxiv.org/abs/1708.02002
self.anchor_matching_iou = 0.5
# if 'True', seg loss distinguishes all classes, else only foreground vs. background (class agnostic).
self.class_specific_seg_flag = False
self.num_seg_classes = 3 if self.class_specific_seg_flag else 2
if self.model == 'retina_unet':
self.operate_stride1 = True