Custom Training Loops
=====================
To use ``*.tfrecords`` from extracted tiles in a custom training loop or entirely separate architecture (such as `StyleGAN2 <https://github.com/jamesdolezal/stylegan2-slideflow>`_ or `YoloV5 <https://github.com/ultralytics/yolov5>`_), Tensorflow ``tf.data.Dataset`` or PyTorch ``torch.utils.data.DataLoader`` objects can be created for easily serving processed images to your custom trainer.
TFRecord DataLoader
*******************
The :class:`slideflow.Dataset` class includes functions to prepare a Tensorflow ``tf.data.Dataset`` or PyTorch ``torch.utils.data.DataLoader`` object to interleave and process images from stored TFRecords. First, create a ``Dataset`` object at a given tile size:
.. code-block:: python
from slideflow import Project
P = Project('/project/path', ...)
dts = P.dataset(tile_px=299, tile_um=302)
If you want to perform any mini-batch balancing, use the ``.balance()`` method:
.. code-block:: python
dts = dts.balance('HPV_status', strategy='category')
Other dataset options can also be applied at this step. For example, to clip the maximum number of tiles to take from a slide, use the ``.clip()`` method:
.. code-block:: python
dts = dts.clip(500)
Finally, use the :meth:`slideflow.Dataset.torch` method to create a DataLoader object:
.. code-block:: python
dataloader = dts.torch(
labels = ... # Your outcome label
batch_size = 64, # Batch size
num_workers = 6, # Number of workers reading tfrecords
infinite = True, # True for training, False for validation
augment = True, # Flip/rotate/compression augmentation
standardize = True, # Standardize images: mean 0, variance of 1
pin_memory = False, # Pin memory to GPUs
)
or the :meth:`slideflow.Dataset.tensorflow` method to create a ``tf.data.Dataset``:
.. code-block:: python
dataloader = dts.tensorflow(
labels = ... # Your outcome label
batch_size = 64, # Batch size
infinite = True, # True for training, False for validation
augment = True, # Flip/rotate/compression augmentation
standardize = True, # Standardize images
)
The returned dataloaders can then be used directly with your external applications. Read more about :ref:`creating and using dataloaders <dataloaders>`.