Custom Training Loops ===================== To use ``*.tfrecords`` from extracted tiles in a custom training loop or entirely separate architecture (such as `StyleGAN2 `_ or `YoloV5 `_), Tensorflow ``tf.data.Dataset`` or PyTorch ``torch.utils.data.DataLoader`` objects can be created for easily serving processed images to your custom trainer. TFRecord DataLoader ******************* The :class:`slideflow.Dataset` class includes functions to prepare a Tensorflow ``tf.data.Dataset`` or PyTorch ``torch.utils.data.DataLoader`` object to interleave and process images from stored TFRecords. First, create a ``Dataset`` object at a given tile size: .. code-block:: python from slideflow import Project P = Project('/project/path', ...) dts = P.dataset(tile_px=299, tile_um=302) If you want to perform any mini-batch balancing, use the ``.balance()`` method: .. code-block:: python dts = dts.balance('HPV_status', strategy='category') Other dataset options can also be applied at this step. For example, to clip the maximum number of tiles to take from a slide, use the ``.clip()`` method: .. code-block:: python dts = dts.clip(500) Finally, use the :meth:`slideflow.Dataset.torch` method to create a DataLoader object: .. code-block:: python dataloader = dts.torch( labels = ... # Your outcome label batch_size = 64, # Batch size num_workers = 6, # Number of workers reading tfrecords infinite = True, # True for training, False for validation augment = True, # Flip/rotate/compression augmentation standardize = True, # Standardize images: mean 0, variance of 1 pin_memory = False, # Pin memory to GPUs ) or the :meth:`slideflow.Dataset.tensorflow` method to create a ``tf.data.Dataset``: .. code-block:: python dataloader = dts.tensorflow( labels = ... # Your outcome label batch_size = 64, # Batch size infinite = True, # True for training, False for validation augment = True, # Flip/rotate/compression augmentation standardize = True, # Standardize images ) The returned dataloaders can then be used directly with your external applications. Read more about :ref:`creating and using dataloaders `.