--- a +++ b/dsb2018_topcoders/selim/resnets.py @@ -0,0 +1,424 @@ +# -*- coding: utf-8 -*- + +""" +keras_resnet.models._2d +~~~~~~~~~~~~~~~~~~~~~~~ + +This module implements popular two-dimensional residual models. +""" + +import keras.backend +import keras.layers +import keras.models +import keras.regularizers + +def ResNet(inputs, blocks, block, include_top=True, classes=1000, numerical_names=None, *args, **kwargs): + """ + Constructs a `keras.models.Model` object using the given block count. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param block: a residual block (e.g. an instance of `keras_resnet.blocks.basic_2d`) + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + + :param numerical_names: list of bool, same size as blocks, used to indicate whether names of layers should include numbers or letters + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.blocks + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> blocks = [2, 2, 2, 2] + + >>> block = keras_resnet.blocks.basic_2d + + >>> model = keras_resnet.models.ResNet(x, classes, blocks, block, classes=classes) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if keras.backend.image_data_format() == "channels_last": + axis = 3 + else: + axis = 1 + + if numerical_names is None: + numerical_names = [True] * len(blocks) + + x = keras.layers.ZeroPadding2D(padding=3, name="padding_conv1")(inputs) + x = keras.layers.Conv2D(64, (7, 7), strides=(2, 2), use_bias=False, name="conv1")(x) + x = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn_conv1")(x) + x = keras.layers.Activation("relu", name="conv1_relu")(x) + x = keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding="same", name="pool1")(x) + + features = 64 + + outputs = [] + + for stage_id, iterations in enumerate(blocks): + for block_id in range(iterations): + x = block(features, stage_id, block_id, numerical_name=(block_id > 0 and numerical_names[stage_id]))(x) + + features *= 2 + + outputs.append(x) + + if include_top: + assert classes > 0 + + x = keras.layers.GlobalAveragePooling2D(name="pool5")(x) + x = keras.layers.Dense(classes, activation="softmax", name="fc1000")(x) + + return keras.models.Model(inputs=inputs, outputs=x, *args, **kwargs) + else: + # Else output each stages features + return keras.models.Model(inputs=inputs, outputs=outputs, *args, **kwargs) + + +def ResNet18(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs): + """ + Constructs a `keras.models.Model` according to the ResNet18 specifications. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> model = keras_resnet.models.ResNet18(x, classes=classes) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if blocks is None: + blocks = [2, 2, 2, 2] + + return ResNet(inputs, blocks, block=keras_resnet.blocks.basic_2d, include_top=include_top, classes=classes, *args, **kwargs) + + +def ResNet34(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs): + """ + Constructs a `keras.models.Model` according to the ResNet34 specifications. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> model = keras_resnet.models.ResNet34(x, classes=classes) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if blocks is None: + blocks = [3, 4, 6, 3] + + return ResNet(inputs, blocks, block=keras_resnet.blocks.basic_2d, include_top=include_top, classes=classes, *args, **kwargs) + + +def ResNet50(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs): + """ + Constructs a `keras.models.Model` according to the ResNet50 specifications. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> model = keras_resnet.models.ResNet50(x) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if blocks is None: + blocks = [3, 4, 6, 3] + numerical_names = [False, False, False, False] + + return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs) + + +def ResNet101(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs): + """ + Constructs a `keras.models.Model` according to the ResNet101 specifications. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> model = keras_resnet.models.ResNet101(x, classes=classes) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if blocks is None: + blocks = [3, 4, 23, 3] + numerical_names = [False, True, True, False] + + return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs) + + +def ResNet152(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs): + """ + Constructs a `keras.models.Model` according to the ResNet152 specifications. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> model = keras_resnet.models.ResNet152(x, classes=classes) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if blocks is None: + blocks = [3, 8, 36, 3] + numerical_names = [False, True, True, False] + + return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs) + + +def ResNet200(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs): + """ + Constructs a `keras.models.Model` according to the ResNet200 specifications. + + :param inputs: input tensor (e.g. an instance of `keras.layers.Input`) + + :param blocks: the network’s residual architecture + + :param include_top: if true, includes classification layers + + :param classes: number of classes to classify (include_top must be true) + + :return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`) + + Usage: + + >>> import keras_resnet.models + + >>> shape, classes = (224, 224, 3), 1000 + + >>> x = keras.layers.Input(shape) + + >>> model = keras_resnet.models.ResNet200(x, classes=classes) + + >>> model.compile("adam", "categorical_crossentropy", ["accuracy"]) + """ + if blocks is None: + blocks = [3, 24, 36, 3] + numerical_names = [False, True, True, False] + + return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs) + + +import keras.layers +import keras.regularizers + +import keras_resnet.layers + +parameters = { + "kernel_initializer": "he_normal" +} + + +def basic_2d(filters, stage=0, block=0, kernel_size=3, numerical_name=False, stride=None): + """ + A two-dimensional basic block. + + :param filters: the output’s feature space + + :param stage: int representing the stage of this block (starting from 0) + + :param block: int representing this block (starting from 0) + + :param kernel_size: size of the kernel + + :param numerical_name: if true, uses numbers to represent blocks instead of chars (ResNet{101, 152, 200}) + + :param stride: int representing the stride used in the shortcut and the first conv layer, default derives stride from block id + + Usage: + + >>> import keras_resnet.blocks + + >>> keras_resnet.blocks.basic_2d(64) + """ + if stride is None: + if block != 0 or stage == 0: + stride = 1 + else: + stride = 2 + + if keras.backend.image_data_format() == "channels_last": + axis = 3 + else: + axis = 1 + + if block > 0 and numerical_name: + block_char = "b{}".format(block) + else: + block_char = chr(ord('a') + block) + + stage_char = str(stage + 2) + + def f(x): + y = keras.layers.ZeroPadding2D(padding=1, name="padding{}{}_branch2a".format(stage_char, block_char))(x) + y = keras.layers.Conv2D(filters, kernel_size, strides=stride, use_bias=False, name="res{}{}_branch2a".format(stage_char, block_char), **parameters)(y) + y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2a".format(stage_char, block_char))(y) + y = keras.layers.Activation("relu", name="res{}{}_branch2a_relu".format(stage_char, block_char))(y) + + y = keras.layers.ZeroPadding2D(padding=1, name="padding{}{}_branch2b".format(stage_char, block_char))(y) + y = keras.layers.Conv2D(filters, kernel_size, use_bias=False, name="res{}{}_branch2b".format(stage_char, block_char), **parameters)(y) + y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2b".format(stage_char, block_char))(y) + + if block == 0: + shortcut = keras.layers.Conv2D(filters, (1, 1), strides=stride, use_bias=False, name="res{}{}_branch1".format(stage_char, block_char), **parameters)(x) + shortcut = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch1".format(stage_char, block_char))(shortcut) + else: + shortcut = x + + y = keras.layers.Add(name="res{}{}".format(stage_char, block_char))([y, shortcut]) + y = keras.layers.Activation("relu", name="res{}{}_relu".format(stage_char, block_char))(y) + + return y + + return f + + +def bottleneck_2d(filters, stage=0, block=0, kernel_size=3, numerical_name=False, stride=None): + """ + A two-dimensional bottleneck block. + + :param filters: the output’s feature space + + :param stage: int representing the stage of this block (starting from 0) + + :param block: int representing this block (starting from 0) + + :param kernel_size: size of the kernel + + :param numerical_name: if true, uses numbers to represent blocks instead of chars (ResNet{101, 152, 200}) + + :param stride: int representing the stride used in the shortcut and the first conv layer, default derives stride from block id + + Usage: + + >>> import keras_resnet.blocks + + >>> bottleneck_2d(64) + """ + if stride is None: + if block != 0 or stage == 0: + stride = 1 + else: + stride = 2 + + if keras.backend.image_data_format() == "channels_last": + axis = 3 + else: + axis = 1 + + if block > 0 and numerical_name: + block_char = "b{}".format(block) + else: + block_char = chr(ord('a') + block) + + stage_char = str(stage + 2) + + def f(x): + y = keras.layers.Conv2D(filters, (1, 1), strides=stride, use_bias=False, name="res{}{}_branch2a".format(stage_char, block_char), **parameters)(x) + y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2a".format(stage_char, block_char))(y) + y = keras.layers.Activation("relu", name="res{}{}_branch2a_relu".format(stage_char, block_char))(y) + + y = keras.layers.ZeroPadding2D(padding=1, name="padding{}{}_branch2b".format(stage_char, block_char))(y) + y = keras.layers.Conv2D(filters, kernel_size, use_bias=False, name="res{}{}_branch2b".format(stage_char, block_char), **parameters)(y) + y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2b".format(stage_char, block_char))(y) + y = keras.layers.Activation("relu", name="res{}{}_branch2b_relu".format(stage_char, block_char))(y) + + y = keras.layers.Conv2D(filters * 4, (1, 1), use_bias=False, name="res{}{}_branch2c".format(stage_char, block_char), **parameters)(y) + y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2c".format(stage_char, block_char))(y) + + if block == 0: + shortcut = keras.layers.Conv2D(filters * 4, (1, 1), strides=stride, use_bias=False, name="res{}{}_branch1".format(stage_char, block_char), **parameters)(x) + shortcut = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch1".format(stage_char, block_char))(shortcut) + else: + shortcut = x + + y = keras.layers.Add(name="res{}{}".format(stage_char, block_char))([y, shortcut]) + y = keras.layers.Activation("relu", name="res{}{}_relu".format(stage_char, block_char))(y) + + return y + + return f +