[16dd74]: / dsb2018_topcoders / selim / resnets.py

Download this file

425 lines (264 with data), 15.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# -*- coding: utf-8 -*-
"""
keras_resnet.models._2d
~~~~~~~~~~~~~~~~~~~~~~~
This module implements popular two-dimensional residual models.
"""
import keras.backend
import keras.layers
import keras.models
import keras.regularizers
def ResNet(inputs, blocks, block, include_top=True, classes=1000, numerical_names=None, *args, **kwargs):
"""
Constructs a `keras.models.Model` object using the given block count.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param block: a residual block (e.g. an instance of `keras_resnet.blocks.basic_2d`)
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:param numerical_names: list of bool, same size as blocks, used to indicate whether names of layers should include numbers or letters
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.blocks
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> blocks = [2, 2, 2, 2]
>>> block = keras_resnet.blocks.basic_2d
>>> model = keras_resnet.models.ResNet(x, classes, blocks, block, classes=classes)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if keras.backend.image_data_format() == "channels_last":
axis = 3
else:
axis = 1
if numerical_names is None:
numerical_names = [True] * len(blocks)
x = keras.layers.ZeroPadding2D(padding=3, name="padding_conv1")(inputs)
x = keras.layers.Conv2D(64, (7, 7), strides=(2, 2), use_bias=False, name="conv1")(x)
x = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn_conv1")(x)
x = keras.layers.Activation("relu", name="conv1_relu")(x)
x = keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding="same", name="pool1")(x)
features = 64
outputs = []
for stage_id, iterations in enumerate(blocks):
for block_id in range(iterations):
x = block(features, stage_id, block_id, numerical_name=(block_id > 0 and numerical_names[stage_id]))(x)
features *= 2
outputs.append(x)
if include_top:
assert classes > 0
x = keras.layers.GlobalAveragePooling2D(name="pool5")(x)
x = keras.layers.Dense(classes, activation="softmax", name="fc1000")(x)
return keras.models.Model(inputs=inputs, outputs=x, *args, **kwargs)
else:
# Else output each stages features
return keras.models.Model(inputs=inputs, outputs=outputs, *args, **kwargs)
def ResNet18(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a `keras.models.Model` according to the ResNet18 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> model = keras_resnet.models.ResNet18(x, classes=classes)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [2, 2, 2, 2]
return ResNet(inputs, blocks, block=keras_resnet.blocks.basic_2d, include_top=include_top, classes=classes, *args, **kwargs)
def ResNet34(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a `keras.models.Model` according to the ResNet34 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> model = keras_resnet.models.ResNet34(x, classes=classes)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [3, 4, 6, 3]
return ResNet(inputs, blocks, block=keras_resnet.blocks.basic_2d, include_top=include_top, classes=classes, *args, **kwargs)
def ResNet50(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a `keras.models.Model` according to the ResNet50 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> model = keras_resnet.models.ResNet50(x)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [3, 4, 6, 3]
numerical_names = [False, False, False, False]
return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs)
def ResNet101(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a `keras.models.Model` according to the ResNet101 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> model = keras_resnet.models.ResNet101(x, classes=classes)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [3, 4, 23, 3]
numerical_names = [False, True, True, False]
return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs)
def ResNet152(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a `keras.models.Model` according to the ResNet152 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> model = keras_resnet.models.ResNet152(x, classes=classes)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [3, 8, 36, 3]
numerical_names = [False, True, True, False]
return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs)
def ResNet200(inputs, blocks=None, include_top=True, classes=1000, *args, **kwargs):
"""
Constructs a `keras.models.Model` according to the ResNet200 specifications.
:param inputs: input tensor (e.g. an instance of `keras.layers.Input`)
:param blocks: the network’s residual architecture
:param include_top: if true, includes classification layers
:param classes: number of classes to classify (include_top must be true)
:return model: ResNet model with encoding output (if `include_top=False`) or classification output (if `include_top=True`)
Usage:
>>> import keras_resnet.models
>>> shape, classes = (224, 224, 3), 1000
>>> x = keras.layers.Input(shape)
>>> model = keras_resnet.models.ResNet200(x, classes=classes)
>>> model.compile("adam", "categorical_crossentropy", ["accuracy"])
"""
if blocks is None:
blocks = [3, 24, 36, 3]
numerical_names = [False, True, True, False]
return ResNet(inputs, blocks, numerical_names=numerical_names, block=bottleneck_2d, include_top=include_top, classes=classes, *args, **kwargs)
import keras.layers
import keras.regularizers
import keras_resnet.layers
parameters = {
"kernel_initializer": "he_normal"
}
def basic_2d(filters, stage=0, block=0, kernel_size=3, numerical_name=False, stride=None):
"""
A two-dimensional basic block.
:param filters: the output’s feature space
:param stage: int representing the stage of this block (starting from 0)
:param block: int representing this block (starting from 0)
:param kernel_size: size of the kernel
:param numerical_name: if true, uses numbers to represent blocks instead of chars (ResNet{101, 152, 200})
:param stride: int representing the stride used in the shortcut and the first conv layer, default derives stride from block id
Usage:
>>> import keras_resnet.blocks
>>> keras_resnet.blocks.basic_2d(64)
"""
if stride is None:
if block != 0 or stage == 0:
stride = 1
else:
stride = 2
if keras.backend.image_data_format() == "channels_last":
axis = 3
else:
axis = 1
if block > 0 and numerical_name:
block_char = "b{}".format(block)
else:
block_char = chr(ord('a') + block)
stage_char = str(stage + 2)
def f(x):
y = keras.layers.ZeroPadding2D(padding=1, name="padding{}{}_branch2a".format(stage_char, block_char))(x)
y = keras.layers.Conv2D(filters, kernel_size, strides=stride, use_bias=False, name="res{}{}_branch2a".format(stage_char, block_char), **parameters)(y)
y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2a".format(stage_char, block_char))(y)
y = keras.layers.Activation("relu", name="res{}{}_branch2a_relu".format(stage_char, block_char))(y)
y = keras.layers.ZeroPadding2D(padding=1, name="padding{}{}_branch2b".format(stage_char, block_char))(y)
y = keras.layers.Conv2D(filters, kernel_size, use_bias=False, name="res{}{}_branch2b".format(stage_char, block_char), **parameters)(y)
y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2b".format(stage_char, block_char))(y)
if block == 0:
shortcut = keras.layers.Conv2D(filters, (1, 1), strides=stride, use_bias=False, name="res{}{}_branch1".format(stage_char, block_char), **parameters)(x)
shortcut = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch1".format(stage_char, block_char))(shortcut)
else:
shortcut = x
y = keras.layers.Add(name="res{}{}".format(stage_char, block_char))([y, shortcut])
y = keras.layers.Activation("relu", name="res{}{}_relu".format(stage_char, block_char))(y)
return y
return f
def bottleneck_2d(filters, stage=0, block=0, kernel_size=3, numerical_name=False, stride=None):
"""
A two-dimensional bottleneck block.
:param filters: the output’s feature space
:param stage: int representing the stage of this block (starting from 0)
:param block: int representing this block (starting from 0)
:param kernel_size: size of the kernel
:param numerical_name: if true, uses numbers to represent blocks instead of chars (ResNet{101, 152, 200})
:param stride: int representing the stride used in the shortcut and the first conv layer, default derives stride from block id
Usage:
>>> import keras_resnet.blocks
>>> bottleneck_2d(64)
"""
if stride is None:
if block != 0 or stage == 0:
stride = 1
else:
stride = 2
if keras.backend.image_data_format() == "channels_last":
axis = 3
else:
axis = 1
if block > 0 and numerical_name:
block_char = "b{}".format(block)
else:
block_char = chr(ord('a') + block)
stage_char = str(stage + 2)
def f(x):
y = keras.layers.Conv2D(filters, (1, 1), strides=stride, use_bias=False, name="res{}{}_branch2a".format(stage_char, block_char), **parameters)(x)
y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2a".format(stage_char, block_char))(y)
y = keras.layers.Activation("relu", name="res{}{}_branch2a_relu".format(stage_char, block_char))(y)
y = keras.layers.ZeroPadding2D(padding=1, name="padding{}{}_branch2b".format(stage_char, block_char))(y)
y = keras.layers.Conv2D(filters, kernel_size, use_bias=False, name="res{}{}_branch2b".format(stage_char, block_char), **parameters)(y)
y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2b".format(stage_char, block_char))(y)
y = keras.layers.Activation("relu", name="res{}{}_branch2b_relu".format(stage_char, block_char))(y)
y = keras.layers.Conv2D(filters * 4, (1, 1), use_bias=False, name="res{}{}_branch2c".format(stage_char, block_char), **parameters)(y)
y = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch2c".format(stage_char, block_char))(y)
if block == 0:
shortcut = keras.layers.Conv2D(filters * 4, (1, 1), strides=stride, use_bias=False, name="res{}{}_branch1".format(stage_char, block_char), **parameters)(x)
shortcut = keras.layers.BatchNormalization(axis=axis, epsilon=1e-5, name="bn{}{}_branch1".format(stage_char, block_char))(shortcut)
else:
shortcut = x
y = keras.layers.Add(name="res{}{}".format(stage_char, block_char))([y, shortcut])
y = keras.layers.Activation("relu", name="res{}{}_relu".format(stage_char, block_char))(y)
return y
return f