Switch to side-by-side view

--- a
+++ b/exseek/snakefiles/feature_selection.snakemake
@@ -0,0 +1,109 @@
+include: 'common.snakemake'
+
+import yaml
+import re
+compare_groups = config['compare_groups']
+
+# Read best preprocess from output file of select_preprocess_method 
+# key: count_method, value: preprocess_method
+
+feature_selectors = list(config['machine_learning']['feature_selectors'])
+classifiers = list(config['machine_learning']['classifiers'])
+
+inputs = {
+    'cross_validation': expand('{output_dir}/cross_validation/filter.{imputation_method}.Norm_{normalization_method}.Batch_{batch_removal_method}_{batch_index}.{count_method}/{compare_group}/{classifier}.{n_features_to_select}.{selector}',
+        output_dir=output_dir, 
+        imputation_method=config['imputation_method'],
+        normalization_method=config['normalization_method'],
+        batch_removal_method=config['batch_removal_method'],
+        batch_index=config['batch_index'],
+        count_method=config['count_method'],
+        classifier=classifiers, 
+        selector=feature_selectors,
+        compare_group=list(compare_groups.keys()), 
+        n_features_to_select=config['n_features_to_select']),
+    'metrics_test': expand('{output_dir}/summary/{cross_validation}/metrics.test.txt', 
+        output_dir=output_dir, cross_validation=['cross_validation']),
+    'metrics_train': expand('{output_dir}/summary/{cross_validation}/metrics.train.txt', 
+        output_dir=output_dir, cross_validation=['cross_validation']),
+    'feature_stability': expand('{output_dir}/summary/{cross_validation}/feature_stability.txt',
+        output_dir=output_dir, cross_validation=['cross_validation'])
+}
+
+def get_all_inputs(wildcards):
+    return inputs
+        
+rule all:
+    input:
+        unpack(get_all_inputs)
+
+rule cross_validation:
+    input:
+        matrix='{output_dir}/matrix_processing/{preprocess_method}.{count_method}.txt',
+        sample_classes=data_dir + '/sample_classes.txt'
+    output:
+        dir=directory('{output_dir}/cross_validation/{preprocess_method}.{count_method}/{compare_group}/{classifier}.{n_features_to_select}.{selector}')
+    run:
+        from copy import deepcopy
+
+        output_config = {}
+        # number of features
+        output_config['n_features_to_select'] = int(wildcards.n_features_to_select)
+        # copy global config parameters
+        for key in ('transpose', 'features', 'cv_params', 'sample_weight', 'preprocess_steps'):
+            if key in config['machine_learning']:
+                output_config[key] = config['machine_learning'][key]
+        # copy selector config
+        selector_config = deepcopy(config['machine_learning']['feature_selector_params'][wildcards.selector])
+        selector_config['enabled'] = True
+        selector_config['params'] = selector_config.get('params', {})
+        # script path for differential expression
+        if selector_config['name'] == 'DiffExpFilter':
+            selector_config['params']['script'] = os.path.join(bin_dir, 'differential_expression.R')
+        # copy selector grid search params
+        if selector_config['params'].get('grid_search', False):
+            grid_search_params = deepcopy(config['machine_learning']['selector_grid_search_params'])
+            grid_search_params.update(selector_config['params']['grid_search_params'])
+            selector_config['params']['grid_search_params'] = grid_search_params
+        # append to preprocess_steps
+        output_config['preprocess_steps'].append({'feature_selection': selector_config})
+        # copy classifier config
+        classifier_config = deepcopy(config['machine_learning']['classifier_params'][wildcards.classifier])
+        classifier_config['params'] = classifier_config.get('params', {})
+        output_config['classifier'] = classifier_config['classifier']
+        output_config['classifier_params'] = classifier_config.get('classifier_params', {})
+        # copy classifier grid search params
+        if classifier_config.get('grid_search', False):
+            grid_search_params = deepcopy(config['machine_learning']['classifier_grid_search_params'])
+            grid_search_params.update(classifier_config['grid_search_params'])
+            # add classifier grid search config
+            output_config['grid_search'] = True
+            output_config['grid_search_params'] = grid_search_params
+        # write output config
+        if not os.path.isdir(output.dir):
+            os.makedirs(output.dir)
+        output_config_file = os.path.join(output.dir, 'config.yaml')
+        with open(output_config_file, 'w') as f:
+            yaml.dump(output_config, f, default_flow_style=False)
+        command = [
+            'python',
+            os.path.join(config['bin_dir'], 'machine_learning.py'), 'run_pipeline',
+            '--matrix', input.matrix,
+            '--sample-classes', input.sample_classes,
+            '--output-dir', output.dir,
+            '--positive-class', '"' + compare_groups[wildcards.compare_group][1] + '"',
+            '--negative-class', '"' + compare_groups[wildcards.compare_group][0] + '"',
+            '--config', output_config_file
+        ]
+        shell(' '.join(command))
+
+
+rule summarize_cross_validation:
+    input:
+        input_dir=lambda wildcards: inputs[wildcards.cross_validation]
+    output:
+        metrics_test='{output_dir}/summary/{cross_validation}/metrics.test.txt',
+        metrics_train='{output_dir}/summary/{cross_validation}/metrics.train.txt',
+        feature_stability='{output_dir}/summary/{cross_validation}/feature_stability.txt'
+    script:
+        'scripts/summarize_cross_validation.py'
\ No newline at end of file