[4c33d4]: / exseek / snakefiles / feature_selection.snakemake

Download this file

109 lines (99 with data), 5.5 kB

include: 'common.snakemake'

import yaml
import re
compare_groups = config['compare_groups']

# Read best preprocess from output file of select_preprocess_method 
# key: count_method, value: preprocess_method

feature_selectors = list(config['machine_learning']['feature_selectors'])
classifiers = list(config['machine_learning']['classifiers'])

inputs = {
    'cross_validation': expand('{output_dir}/cross_validation/filter.{imputation_method}.Norm_{normalization_method}.Batch_{batch_removal_method}_{batch_index}.{count_method}/{compare_group}/{classifier}.{n_features_to_select}.{selector}',
        output_dir=output_dir, 
        imputation_method=config['imputation_method'],
        normalization_method=config['normalization_method'],
        batch_removal_method=config['batch_removal_method'],
        batch_index=config['batch_index'],
        count_method=config['count_method'],
        classifier=classifiers, 
        selector=feature_selectors,
        compare_group=list(compare_groups.keys()), 
        n_features_to_select=config['n_features_to_select']),
    'metrics_test': expand('{output_dir}/summary/{cross_validation}/metrics.test.txt', 
        output_dir=output_dir, cross_validation=['cross_validation']),
    'metrics_train': expand('{output_dir}/summary/{cross_validation}/metrics.train.txt', 
        output_dir=output_dir, cross_validation=['cross_validation']),
    'feature_stability': expand('{output_dir}/summary/{cross_validation}/feature_stability.txt',
        output_dir=output_dir, cross_validation=['cross_validation'])
}

def get_all_inputs(wildcards):
    return inputs
        
rule all:
    input:
        unpack(get_all_inputs)

rule cross_validation:
    input:
        matrix='{output_dir}/matrix_processing/{preprocess_method}.{count_method}.txt',
        sample_classes=data_dir + '/sample_classes.txt'
    output:
        dir=directory('{output_dir}/cross_validation/{preprocess_method}.{count_method}/{compare_group}/{classifier}.{n_features_to_select}.{selector}')
    run:
        from copy import deepcopy

        output_config = {}
        # number of features
        output_config['n_features_to_select'] = int(wildcards.n_features_to_select)
        # copy global config parameters
        for key in ('transpose', 'features', 'cv_params', 'sample_weight', 'preprocess_steps'):
            if key in config['machine_learning']:
                output_config[key] = config['machine_learning'][key]
        # copy selector config
        selector_config = deepcopy(config['machine_learning']['feature_selector_params'][wildcards.selector])
        selector_config['enabled'] = True
        selector_config['params'] = selector_config.get('params', {})
        # script path for differential expression
        if selector_config['name'] == 'DiffExpFilter':
            selector_config['params']['script'] = os.path.join(bin_dir, 'differential_expression.R')
        # copy selector grid search params
        if selector_config['params'].get('grid_search', False):
            grid_search_params = deepcopy(config['machine_learning']['selector_grid_search_params'])
            grid_search_params.update(selector_config['params']['grid_search_params'])
            selector_config['params']['grid_search_params'] = grid_search_params
        # append to preprocess_steps
        output_config['preprocess_steps'].append({'feature_selection': selector_config})
        # copy classifier config
        classifier_config = deepcopy(config['machine_learning']['classifier_params'][wildcards.classifier])
        classifier_config['params'] = classifier_config.get('params', {})
        output_config['classifier'] = classifier_config['classifier']
        output_config['classifier_params'] = classifier_config.get('classifier_params', {})
        # copy classifier grid search params
        if classifier_config.get('grid_search', False):
            grid_search_params = deepcopy(config['machine_learning']['classifier_grid_search_params'])
            grid_search_params.update(classifier_config['grid_search_params'])
            # add classifier grid search config
            output_config['grid_search'] = True
            output_config['grid_search_params'] = grid_search_params
        # write output config
        if not os.path.isdir(output.dir):
            os.makedirs(output.dir)
        output_config_file = os.path.join(output.dir, 'config.yaml')
        with open(output_config_file, 'w') as f:
            yaml.dump(output_config, f, default_flow_style=False)
        command = [
            'python',
            os.path.join(config['bin_dir'], 'machine_learning.py'), 'run_pipeline',
            '--matrix', input.matrix,
            '--sample-classes', input.sample_classes,
            '--output-dir', output.dir,
            '--positive-class', '"' + compare_groups[wildcards.compare_group][1] + '"',
            '--negative-class', '"' + compare_groups[wildcards.compare_group][0] + '"',
            '--config', output_config_file
        ]
        shell(' '.join(command))


rule summarize_cross_validation:
    input:
        input_dir=lambda wildcards: inputs[wildcards.cross_validation]
    output:
        metrics_test='{output_dir}/summary/{cross_validation}/metrics.test.txt',
        metrics_train='{output_dir}/summary/{cross_validation}/metrics.train.txt',
        feature_stability='{output_dir}/summary/{cross_validation}/feature_stability.txt'
    script:
        'scripts/summarize_cross_validation.py'