Switch to unified view

a b/utils/eval_utils_mtl_concat.py
1
import numpy as np
2
3
import torch
4
import torch.nn as nn
5
import torch.nn.functional as F
6
from models.model_toad import TOAD_fc_mtl_concat
7
import pdb
8
import os
9
import pandas as pd
10
from utils.utils import *
11
from utils.core_utils_mtl_concat import EarlyStopping,  Accuracy_Logger
12
from utils.file_utils import save_pkl, load_pkl
13
from sklearn.metrics import roc_auc_score, roc_curve, auc
14
import h5py
15
from models.resnet_custom import resnet50_baseline
16
import math
17
from sklearn.preprocessing import label_binarize
18
19
def initiate_model(args, ckpt_path=None):
20
    print('Init Model')    
21
    model_dict = {"dropout": args.drop_out, 'n_classes': args.n_classes}
22
    model = TOAD_fc_mtl_concat(**model_dict)    
23
24
    model.relocate()
25
    print_network(model)
26
27
    if ckpt_path is not None:
28
        ckpt = torch.load(ckpt_path)
29
        model.load_state_dict(ckpt, strict=False)
30
31
    model.eval()
32
    return model
33
34
def eval(dataset, args, ckpt_path):
35
    model = initiate_model(args, ckpt_path)
36
37
    print('Init Loaders')
38
    loader = get_simple_loader(dataset)
39
    results_dict = summary(model, loader, args)
40
41
    print('cls_test_error: ', results_dict['cls_test_error'])
42
    print('cls_auc: ', results_dict['cls_auc'])
43
    print('site_test_error: ', results_dict['site_test_error'])
44
    print('site_auc: ', results_dict['site_auc'])
45
46
    return model, results_dict
47
48
# Code taken from pytorch/examples for evaluating topk classification on on ImageNet
49
def accuracy(output, target, topk=(1,)):
50
    """Computes the accuracy over the k top predictions for the specified values of k"""
51
    with torch.no_grad():
52
        maxk = max(topk)
53
        batch_size = target.size(0)
54
55
        _, pred = output.topk(maxk, 1, True, True)
56
        pred = pred.t()
57
        correct = pred.eq(target.view(1, -1).expand_as(pred))
58
59
        res = []
60
        for k in topk:
61
            correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
62
            res.append(correct_k.mul_(1.0 / batch_size))
63
        return res
64
65
def summary(model, loader, args):
66
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
67
    cls_logger = Accuracy_Logger(n_classes=args.n_classes)
68
    site_logger = Accuracy_Logger(n_classes=2)
69
    model.eval()
70
    cls_test_error = 0.
71
    cls_test_loss = 0.
72
    site_test_error = 0.
73
    site_test_loss = 0.
74
75
    all_cls_probs = np.zeros((len(loader), args.n_classes))
76
    all_cls_labels = np.zeros(len(loader))
77
    all_site_probs = np.zeros((len(loader), 2))
78
    all_site_labels = np.zeros(len(loader))
79
    all_sexes = np.zeros(len(loader))
80
81
    slide_ids = loader.dataset.slide_data['slide_id']
82
    patient_results = {}
83
84
    for batch_idx, (data, label, site, sex) in enumerate(loader):
85
        data =  data.to(device)
86
        label = label.to(device)
87
        site = site.to(device)
88
        sex = sex.float().to(device)
89
        slide_id = slide_ids.iloc[batch_idx]
90
        with torch.no_grad():
91
            model_results_dict = model(data, sex)
92
93
        logits, Y_prob, Y_hat  = model_results_dict['logits'], model_results_dict['Y_prob'], model_results_dict['Y_hat']
94
        site_logits, site_prob, site_hat = model_results_dict['site_logits'], model_results_dict['site_prob'], model_results_dict['site_hat']
95
        del model_results_dict
96
97
        cls_logger.log(Y_hat, label)
98
        site_logger.log(site_hat, site)
99
        cls_probs = Y_prob.cpu().numpy()
100
        all_cls_probs[batch_idx] = cls_probs
101
        all_cls_labels[batch_idx] = label.item()
102
103
        all_sexes[batch_idx] = sex.item()
104
105
        site_probs = site_prob.cpu().numpy()
106
        all_site_probs[batch_idx] = site_probs
107
        all_site_labels[batch_idx] = site.item()
108
        
109
        patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'cls_prob': cls_probs, 'cls_label': label.item(), 
110
                                'site_prob': site_probs, 'site_label': site.item()}})
111
        cls_error = calculate_error(Y_hat, label)
112
        cls_test_error += cls_error
113
        site_error = calculate_error(site_hat, site)
114
        site_test_error += site_error
115
116
    cls_test_error /= len(loader)
117
    site_test_error /= len(loader)
118
119
    all_cls_preds = np.argmax(all_cls_probs, axis=1)
120
    all_site_preds = np.argmax(all_site_probs, axis=1)
121
122
    if args.n_classes > 2:
123
        if args.n_classes > 5:
124
            topk = (1,3,5)
125
        else:
126
            topk = (1,3)
127
        topk_accs = accuracy(torch.from_numpy(all_cls_probs), torch.from_numpy(all_cls_labels), topk=topk)
128
        for k in range(len(topk)):
129
            print('top{} acc: {:.3f}'.format(topk[k], topk_accs[k].item()))
130
131
    if len(np.unique(all_cls_labels)) == 1:
132
        cls_auc = -1
133
        cls_aucs = []
134
    else:
135
        if args.n_classes == 2:
136
            cls_auc = roc_auc_score(all_cls_labels, all_cls_probs[:, 1])
137
            cls_aucs = []
138
        else:
139
            cls_aucs = []
140
            binary_labels = label_binarize(all_cls_labels, classes=[i for i in range(args.n_classes)])
141
            for class_idx in range(args.n_classes):
142
                if class_idx in all_cls_labels:
143
                    fpr, tpr, _ = roc_curve(binary_labels[:, class_idx], all_cls_probs[:, class_idx])
144
                    cls_aucs.append(auc(fpr, tpr))
145
                else:
146
                    cls_aucs.append(float('nan'))
147
            if args.micro_average:
148
                binary_labels = label_binarize(all_cls_labels, classes=[i for i in range(args.n_classes)])
149
                valid_classes = np.where(np.any(binary_labels, axis=0))[0]
150
                binary_labels = binary_labels[:, valid_classes]
151
                valid_cls_probs = all_cls_probs[:, valid_classes]
152
                fpr, tpr, _ = roc_curve(binary_labels.ravel(), valid_cls_probs.ravel())
153
                cls_auc = auc(fpr, tpr)
154
            else:
155
                cls_auc = np.nanmean(np.array(cls_aucs))
156
    
157
    if len(np.unique(all_site_labels)) == 1:
158
        site_auc = -1
159
    else:
160
        site_auc = roc_auc_score(all_site_labels, all_site_probs[:, 1])
161
162
    results_dict = {'slide_id': slide_ids, 'sex': all_sexes, 'Y': all_cls_labels, 'Y_hat': all_cls_preds, 
163
                    'site': all_site_labels, 'site_hat': all_site_preds}
164
    for c in range(args.n_classes):
165
        results_dict.update({'p_{}'.format(c): all_cls_probs[:,c]})
166
167
    results_dict.update({'site_p': all_site_probs[:,1]})
168
169
    df = pd.DataFrame(results_dict)
170
    inference_results = {'patient_results': patient_results, 'cls_test_error': cls_test_error,
171
                     'cls_auc': cls_auc, 'cls_aucs': cls_aucs,
172
               'site_test_error': site_test_error, 'site_auc': site_auc, 'loggers': (cls_logger, site_logger), 'df':df}
173
174
    for k in range(len(topk)):
175
        inference_results.update({'top{}_acc'.format(topk[k]): topk_accs[k].item()})
176
177
    return inference_results