[fdd588]: / utils / eval_utils_mtl_concat.py

Download this file

178 lines (146 with data), 6.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.model_toad import TOAD_fc_mtl_concat
import pdb
import os
import pandas as pd
from utils.utils import *
from utils.core_utils_mtl_concat import EarlyStopping, Accuracy_Logger
from utils.file_utils import save_pkl, load_pkl
from sklearn.metrics import roc_auc_score, roc_curve, auc
import h5py
from models.resnet_custom import resnet50_baseline
import math
from sklearn.preprocessing import label_binarize
def initiate_model(args, ckpt_path=None):
print('Init Model')
model_dict = {"dropout": args.drop_out, 'n_classes': args.n_classes}
model = TOAD_fc_mtl_concat(**model_dict)
model.relocate()
print_network(model)
if ckpt_path is not None:
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt, strict=False)
model.eval()
return model
def eval(dataset, args, ckpt_path):
model = initiate_model(args, ckpt_path)
print('Init Loaders')
loader = get_simple_loader(dataset)
results_dict = summary(model, loader, args)
print('cls_test_error: ', results_dict['cls_test_error'])
print('cls_auc: ', results_dict['cls_auc'])
print('site_test_error: ', results_dict['site_test_error'])
print('site_auc: ', results_dict['site_auc'])
return model, results_dict
# Code taken from pytorch/examples for evaluating topk classification on on ImageNet
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(1.0 / batch_size))
return res
def summary(model, loader, args):
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
cls_logger = Accuracy_Logger(n_classes=args.n_classes)
site_logger = Accuracy_Logger(n_classes=2)
model.eval()
cls_test_error = 0.
cls_test_loss = 0.
site_test_error = 0.
site_test_loss = 0.
all_cls_probs = np.zeros((len(loader), args.n_classes))
all_cls_labels = np.zeros(len(loader))
all_site_probs = np.zeros((len(loader), 2))
all_site_labels = np.zeros(len(loader))
all_sexes = np.zeros(len(loader))
slide_ids = loader.dataset.slide_data['slide_id']
patient_results = {}
for batch_idx, (data, label, site, sex) in enumerate(loader):
data = data.to(device)
label = label.to(device)
site = site.to(device)
sex = sex.float().to(device)
slide_id = slide_ids.iloc[batch_idx]
with torch.no_grad():
model_results_dict = model(data, sex)
logits, Y_prob, Y_hat = model_results_dict['logits'], model_results_dict['Y_prob'], model_results_dict['Y_hat']
site_logits, site_prob, site_hat = model_results_dict['site_logits'], model_results_dict['site_prob'], model_results_dict['site_hat']
del model_results_dict
cls_logger.log(Y_hat, label)
site_logger.log(site_hat, site)
cls_probs = Y_prob.cpu().numpy()
all_cls_probs[batch_idx] = cls_probs
all_cls_labels[batch_idx] = label.item()
all_sexes[batch_idx] = sex.item()
site_probs = site_prob.cpu().numpy()
all_site_probs[batch_idx] = site_probs
all_site_labels[batch_idx] = site.item()
patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'cls_prob': cls_probs, 'cls_label': label.item(),
'site_prob': site_probs, 'site_label': site.item()}})
cls_error = calculate_error(Y_hat, label)
cls_test_error += cls_error
site_error = calculate_error(site_hat, site)
site_test_error += site_error
cls_test_error /= len(loader)
site_test_error /= len(loader)
all_cls_preds = np.argmax(all_cls_probs, axis=1)
all_site_preds = np.argmax(all_site_probs, axis=1)
if args.n_classes > 2:
if args.n_classes > 5:
topk = (1,3,5)
else:
topk = (1,3)
topk_accs = accuracy(torch.from_numpy(all_cls_probs), torch.from_numpy(all_cls_labels), topk=topk)
for k in range(len(topk)):
print('top{} acc: {:.3f}'.format(topk[k], topk_accs[k].item()))
if len(np.unique(all_cls_labels)) == 1:
cls_auc = -1
cls_aucs = []
else:
if args.n_classes == 2:
cls_auc = roc_auc_score(all_cls_labels, all_cls_probs[:, 1])
cls_aucs = []
else:
cls_aucs = []
binary_labels = label_binarize(all_cls_labels, classes=[i for i in range(args.n_classes)])
for class_idx in range(args.n_classes):
if class_idx in all_cls_labels:
fpr, tpr, _ = roc_curve(binary_labels[:, class_idx], all_cls_probs[:, class_idx])
cls_aucs.append(auc(fpr, tpr))
else:
cls_aucs.append(float('nan'))
if args.micro_average:
binary_labels = label_binarize(all_cls_labels, classes=[i for i in range(args.n_classes)])
valid_classes = np.where(np.any(binary_labels, axis=0))[0]
binary_labels = binary_labels[:, valid_classes]
valid_cls_probs = all_cls_probs[:, valid_classes]
fpr, tpr, _ = roc_curve(binary_labels.ravel(), valid_cls_probs.ravel())
cls_auc = auc(fpr, tpr)
else:
cls_auc = np.nanmean(np.array(cls_aucs))
if len(np.unique(all_site_labels)) == 1:
site_auc = -1
else:
site_auc = roc_auc_score(all_site_labels, all_site_probs[:, 1])
results_dict = {'slide_id': slide_ids, 'sex': all_sexes, 'Y': all_cls_labels, 'Y_hat': all_cls_preds,
'site': all_site_labels, 'site_hat': all_site_preds}
for c in range(args.n_classes):
results_dict.update({'p_{}'.format(c): all_cls_probs[:,c]})
results_dict.update({'site_p': all_site_probs[:,1]})
df = pd.DataFrame(results_dict)
inference_results = {'patient_results': patient_results, 'cls_test_error': cls_test_error,
'cls_auc': cls_auc, 'cls_aucs': cls_aucs,
'site_test_error': site_test_error, 'site_auc': site_auc, 'loggers': (cls_logger, site_logger), 'df':df}
for k in range(len(topk)):
inference_results.update({'top{}_acc'.format(topk[k]): topk_accs[k].item()})
return inference_results