|
a |
|
b/Cluster-ViT/main.py |
|
|
1 |
import argparse |
|
|
2 |
import datetime |
|
|
3 |
import json |
|
|
4 |
import random |
|
|
5 |
from re import A |
|
|
6 |
import time |
|
|
7 |
from pathlib import Path |
|
|
8 |
import os |
|
|
9 |
|
|
|
10 |
from torch.utils.data.dataset import Subset |
|
|
11 |
from datasets.MyData import MyDataset |
|
|
12 |
import numpy as np |
|
|
13 |
import torch |
|
|
14 |
from torch.utils.data import DataLoader, DistributedSampler,random_split |
|
|
15 |
from sklearn.model_selection import KFold |
|
|
16 |
import util.misc as utils |
|
|
17 |
|
|
|
18 |
from models.engine import evaluate, train_one_epoch_SAM,test |
|
|
19 |
from models import build_model |
|
|
20 |
from models.sam import SAM |
|
|
21 |
from torch.utils.tensorboard import SummaryWriter |
|
|
22 |
import pandas as pd |
|
|
23 |
def get_args_parser(): |
|
|
24 |
parser = argparse.ArgumentParser('Set transformer detector', add_help=False) |
|
|
25 |
parser.add_argument('--lr', default=1e-4, type=float) |
|
|
26 |
parser.add_argument('--batch_size', default=8, type=int) |
|
|
27 |
parser.add_argument('--weight_decay', default=1e-4, type=float) |
|
|
28 |
parser.add_argument('--epochs', default=300, type=int) |
|
|
29 |
parser.add_argument('--lr_drop', default=200, type=int) |
|
|
30 |
parser.add_argument('--clip_max_norm', default=0.1, type=float, |
|
|
31 |
help='gradient clipping max norm') |
|
|
32 |
|
|
|
33 |
parser.add_argument('--position_embedding', default='3Dlearned', type=str, |
|
|
34 |
help="Type of positional embedding to use on top of the image features") |
|
|
35 |
|
|
|
36 |
# * Transformer |
|
|
37 |
parser.add_argument('--enc_layers', default=6, type=int, |
|
|
38 |
help="Number of encoding layers in the transformer") |
|
|
39 |
parser.add_argument('--dec_layers', default=6, type=int, |
|
|
40 |
help="Number of decoding layers in the transformer") |
|
|
41 |
parser.add_argument('--dim_feedforward', default=2048, type=int, |
|
|
42 |
help="Intermediate size of the feedforward layers in the transformer blocks") |
|
|
43 |
parser.add_argument('--hidden_dim', default=256, type=int, |
|
|
44 |
help="Size of the embeddings (dimension of the transformer)") |
|
|
45 |
parser.add_argument('--dropout', default=0.1, type=float, |
|
|
46 |
help="Dropout applied in the transformer") |
|
|
47 |
parser.add_argument('--nheads', default=8, type=int, |
|
|
48 |
help="Number of attention heads inside the transformer's attentions") |
|
|
49 |
parser.add_argument('--num_queries', default=100, type=int, |
|
|
50 |
help="Number of query slots") |
|
|
51 |
parser.add_argument('--pre_norm', action='store_true',default=False) |
|
|
52 |
parser.add_argument('--pretrained_path', default='', type=str, help="path of pretrained model") |
|
|
53 |
|
|
|
54 |
# dataset parameters |
|
|
55 |
parser.add_argument('--dataset_file', default='coco') |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
parser.add_argument('--output_dir', default='./', |
|
|
59 |
help='path where to save, empty for no saving') |
|
|
60 |
parser.add_argument('--device', default='cuda', |
|
|
61 |
help='device to use for training / testing') |
|
|
62 |
parser.add_argument('--seed', default=42, type=int) |
|
|
63 |
parser.add_argument('--resume', default='', help='resume from checkpoint') |
|
|
64 |
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', |
|
|
65 |
help='start epoch') |
|
|
66 |
parser.add_argument('--eval', action='store_true') |
|
|
67 |
parser.add_argument('--num_workers', default=2, type=int) |
|
|
68 |
parser.add_argument('--kfoldNum', default=5, type=int) |
|
|
69 |
parser.add_argument('--dataDir',type=str,help='path of the data') |
|
|
70 |
parser.add_argument('--externalDataDir',type=str,help='path of the external test data') |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
# distributed training parameters |
|
|
75 |
parser.add_argument('--world_size', default=1, type=int, |
|
|
76 |
help='number of distributed processes') |
|
|
77 |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
|
78 |
|
|
|
79 |
# cluster parameters |
|
|
80 |
parser.add_argument('--group_Q', action='store_true', default=False) |
|
|
81 |
parser.add_argument('--group_K', action='store_true', default=False) |
|
|
82 |
parser.add_argument('--cuda-devices', default=None) |
|
|
83 |
parser.add_argument('--max_num_cluster', default=64, type=int) |
|
|
84 |
parser.add_argument('--sequence_len', default=15000, type=int) |
|
|
85 |
|
|
|
86 |
# gridsearch parameters |
|
|
87 |
parser.add_argument('--withPosEmbedding', action='store_true', default=False) |
|
|
88 |
parser.add_argument('--seq_pool', action='store_true', default=False,help='use attention pooling layer for aggregating patch risk score') |
|
|
89 |
parser.add_argument('--withLN', action='store_true', default=False) |
|
|
90 |
parser.add_argument('--withEmbeddingPreNorm', action='store_true', default=False,help='Pre-normalize the patch representation before feeding them into ViT') |
|
|
91 |
parser.add_argument('--input_pool', action='store_true', default=False) |
|
|
92 |
parser.add_argument('--mixUp', action='store_true', default=False) |
|
|
93 |
parser.add_argument('--SAM', action='store_true', default=False) |
|
|
94 |
|
|
|
95 |
|
|
|
96 |
return parser |
|
|
97 |
|
|
|
98 |
def main(args): |
|
|
99 |
allDataset = MyDataset(root_dir=args.dataDir,sequence_len=args.sequence_len,max_num_cluster=args.max_num_cluster,status = 'test',input_pool=args.input_pool) |
|
|
100 |
kfoldSplits=KFold(n_splits=args.kfoldNum,shuffle=True,random_state=args.seed) |
|
|
101 |
splitIdx = kfoldSplits.split(np.arange(len(allDataset))) |
|
|
102 |
CIndexTest = [] |
|
|
103 |
CIndexExternalTest = [] |
|
|
104 |
IBSTest = [] |
|
|
105 |
IBSExternalTest = [] |
|
|
106 |
correlationCoeffTest = [] |
|
|
107 |
IPCWCIndexTest = [] |
|
|
108 |
IPCWCIndexExternalTest = [] |
|
|
109 |
for fold, (train_idx,test_idx) in enumerate(splitIdx): |
|
|
110 |
utils.init_distributed_mode(args) |
|
|
111 |
print(args) |
|
|
112 |
device = torch.device(args.device) |
|
|
113 |
|
|
|
114 |
# fix the seed for reproducibility |
|
|
115 |
seed = args.seed + utils.get_rank() |
|
|
116 |
torch.manual_seed(seed) |
|
|
117 |
np.random.seed(seed) |
|
|
118 |
random.seed(seed) |
|
|
119 |
|
|
|
120 |
model, criterion = build_model(args) |
|
|
121 |
model.to(device) |
|
|
122 |
|
|
|
123 |
model_without_ddp = model |
|
|
124 |
if args.distributed: |
|
|
125 |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
|
126 |
model_without_ddp = model.module |
|
|
127 |
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
128 |
print('number of params:', n_parameters) |
|
|
129 |
if args.pretrained_path!='': |
|
|
130 |
pretrainedModel = torch.load(args.pretrained_path) |
|
|
131 |
model_without_ddp.load_state_dict(pretrainedModel['model'], strict=False) |
|
|
132 |
|
|
|
133 |
if args.SAM: |
|
|
134 |
base_optimizer = torch.optim.Adam # define an optimizer for the "sharpness-aware" update |
|
|
135 |
optimizer_SAM = SAM(model_without_ddp.parameters(), base_optimizer,lr=args.lr,weight_decay=args.weight_decay) |
|
|
136 |
optimizer = optimizer_SAM |
|
|
137 |
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) |
|
|
138 |
else: |
|
|
139 |
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr, |
|
|
140 |
weight_decay=args.weight_decay) |
|
|
141 |
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) |
|
|
142 |
|
|
|
143 |
best_loss = 1e12 |
|
|
144 |
tb_writer = SummaryWriter() |
|
|
145 |
dataset_train,dataset_val = random_split(Subset(allDataset,train_idx),[int(len(train_idx)*0.8),len(train_idx)-int(len(train_idx)*0.8)],generator=torch.Generator().manual_seed(args.seed)) |
|
|
146 |
dataset_test = Subset(allDataset,test_idx) |
|
|
147 |
dataset_train_all = Subset(allDataset,train_idx) |
|
|
148 |
|
|
|
149 |
if args.distributed: |
|
|
150 |
sampler_train = DistributedSampler(dataset_train) |
|
|
151 |
sampler_val = DistributedSampler(dataset_val, shuffle=False) |
|
|
152 |
sampler_test = DistributedSampler(dataset_test, shuffle=False) |
|
|
153 |
else: |
|
|
154 |
sampler_train = torch.utils.data.RandomSampler(dataset_train) |
|
|
155 |
sampler_val = torch.utils.data.SequentialSampler(dataset_val) |
|
|
156 |
sampler_test = torch.utils.data.SequentialSampler(dataset_test) |
|
|
157 |
|
|
|
158 |
batch_sampler_train = torch.utils.data.BatchSampler( |
|
|
159 |
sampler_train, args.batch_size, drop_last=False) |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, |
|
|
163 |
collate_fn=None, num_workers=args.num_workers) |
|
|
164 |
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val, |
|
|
165 |
drop_last=False,num_workers=args.num_workers) |
|
|
166 |
data_loader_test = DataLoader(dataset_test, args.batch_size, sampler=sampler_test, |
|
|
167 |
drop_last=False, num_workers=args.num_workers) |
|
|
168 |
|
|
|
169 |
output_dir = Path(args.output_dir) |
|
|
170 |
if args.kfoldNum>1: |
|
|
171 |
output_dir = output_dir/f'fold{fold}' |
|
|
172 |
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
173 |
|
|
|
174 |
if args.resume: |
|
|
175 |
checkpoint = torch.load(args.resume, map_location='cpu') |
|
|
176 |
model_without_ddp.load_state_dict(checkpoint['model']) |
|
|
177 |
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: |
|
|
178 |
optimizer.load_state_dict(checkpoint['optimizer']) |
|
|
179 |
lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) |
|
|
180 |
args.start_epoch = checkpoint['epoch'] + 1 |
|
|
181 |
|
|
|
182 |
if args.eval: |
|
|
183 |
val_stats = evaluate(model, criterion, data_loader_train, device, args.output_dir,'Validation') |
|
|
184 |
|
|
|
185 |
print(f"fold {fold}/{args.kfoldNum} Start training") |
|
|
186 |
start_time = time.time() |
|
|
187 |
# train the model |
|
|
188 |
for epoch in range(args.start_epoch, args.epochs): |
|
|
189 |
if args.distributed: |
|
|
190 |
sampler_train.set_epoch(epoch) |
|
|
191 |
|
|
|
192 |
train_stats = train_one_epoch_SAM( |
|
|
193 |
model, criterion, data_loader_train, optimizer, device, epoch,fold,tb_writer, |
|
|
194 |
args.clip_max_norm,mixUp=args.mixUp,SAM=args.SAM) |
|
|
195 |
|
|
|
196 |
lr_scheduler.step() |
|
|
197 |
|
|
|
198 |
train_eval_stats = evaluate( |
|
|
199 |
model, criterion, data_loader_train, device, args.output_dir,'Train') |
|
|
200 |
val_stats = evaluate( |
|
|
201 |
model, criterion, data_loader_val, device, args.output_dir, 'Validation') |
|
|
202 |
test_stats = evaluate( |
|
|
203 |
model, criterion, data_loader_test, device, args.output_dir, 'Test') |
|
|
204 |
|
|
|
205 |
is_best = val_stats['loss'] < best_loss |
|
|
206 |
best_loss = min(val_stats['loss'], best_loss) |
|
|
207 |
|
|
|
208 |
if args.output_dir: |
|
|
209 |
checkpoint_paths = [output_dir / 'checkpoint.pth'] |
|
|
210 |
# extra checkpoint before LR drop and every 100 epochs |
|
|
211 |
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0: |
|
|
212 |
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth') |
|
|
213 |
if is_best: |
|
|
214 |
checkpoint_paths.append(output_dir / f'model_best.pth.tar') |
|
|
215 |
for checkpoint_path in checkpoint_paths: |
|
|
216 |
utils.save_on_master({ |
|
|
217 |
'model': model_without_ddp.state_dict(), |
|
|
218 |
'optimizer': optimizer.state_dict(), |
|
|
219 |
'lr_scheduler': lr_scheduler.state_dict(), |
|
|
220 |
'epoch': epoch, |
|
|
221 |
'args': args, |
|
|
222 |
}, checkpoint_path) |
|
|
223 |
|
|
|
224 |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
|
225 |
**{f'train_eval{k}': v for k, v in train_eval_stats.items()}, |
|
|
226 |
**{f'val_{k}': v for k, v in val_stats.items()}, |
|
|
227 |
**{f'test_{k}': v for k, v in test_stats.items()}, |
|
|
228 |
'epoch': epoch, |
|
|
229 |
'n_parameters': n_parameters} |
|
|
230 |
|
|
|
231 |
temploss = train_eval_stats |
|
|
232 |
tb_writer.add_scalar('train/loss'+'fold{}'.format(fold), temploss['loss'], epoch) |
|
|
233 |
tb_writer.add_scalar('train/CIndex'+'fold{}'.format(fold), temploss['CIndex'], epoch) |
|
|
234 |
temploss = val_stats |
|
|
235 |
tb_writer.add_scalar('val/loss'+'fold{}'.format(fold), temploss['loss'], epoch) |
|
|
236 |
tb_writer.add_scalar('val/CIndex'+'fold{}'.format(fold), temploss['CIndex'], epoch) |
|
|
237 |
temploss = test_stats |
|
|
238 |
tb_writer.add_scalar('test/loss'+'fold{}'.format(fold), temploss['loss'], epoch) |
|
|
239 |
tb_writer.add_scalar('test/CIndex'+'fold{}'.format(fold), temploss['CIndex'], epoch) |
|
|
240 |
|
|
|
241 |
if args.output_dir and utils.is_main_process(): |
|
|
242 |
with (output_dir / f"trainingLog_fold{fold}.txt").open("a") as f: |
|
|
243 |
f.write(json.dumps(log_stats) + "\n") |
|
|
244 |
# evaluate the best model on internal and external datasets |
|
|
245 |
bestModelPath = output_dir / f'model_best.pth.tar' |
|
|
246 |
bestCheckpoint = torch.load(bestModelPath) |
|
|
247 |
bestModel, testcriterion = build_model(args) |
|
|
248 |
bestModel.to(device) |
|
|
249 |
bestModel.load_state_dict(bestCheckpoint['model']) |
|
|
250 |
data_loader_train_all = DataLoader(dataset_train_all, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True) |
|
|
251 |
dataset_external_test = MyDataset(root_dir=externalDataDir,sequence_len=args.sequence_len,max_num_cluster=args.max_num_cluster,status='externalTest',input_pool=args.input_pool) |
|
|
252 |
dataset_external_test.status = 'externalTest' |
|
|
253 |
data_loader_external_test = DataLoader(dataset_external_test, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True) |
|
|
254 |
externalOutputDir = output_dir / 'externalTest' |
|
|
255 |
Path(externalOutputDir).mkdir(parents=True, exist_ok=True) |
|
|
256 |
internalTestBestModelStatus = test(bestModel, testcriterion, data_loader_test, data_loader_train_all, device, output_dir,fold,coxBiomarkerRisk) |
|
|
257 |
externalTestBestModelStatus = test(bestModel, testcriterion, data_loader_external_test, data_loader_train_all, device, externalOutputDir,fold) |
|
|
258 |
log_stats = { |
|
|
259 |
**{f'testBestModel_{k}': v for k, v in internalTestBestModelStatus.items()}, |
|
|
260 |
**{f'ExternalTestBestModel_{k}': v for k, v in externalTestBestModelStatus.items()}, |
|
|
261 |
'fold': fold |
|
|
262 |
} |
|
|
263 |
|
|
|
264 |
CIndexTest.append(internalTestBestModelStatus['CIndex']) |
|
|
265 |
CIndexExternalTest.append(externalTestBestModelStatus['CIndex']) |
|
|
266 |
IPCWCIndexTest.append(internalTestBestModelStatus['IPCWCIndex']) |
|
|
267 |
IPCWCIndexExternalTest.append(externalTestBestModelStatus['IPCWCIndex']) |
|
|
268 |
IBSTest.append(internalTestBestModelStatus['IBSTest']) |
|
|
269 |
IBSExternalTest.append(externalTestBestModelStatus['IBSTest']) |
|
|
270 |
|
|
|
271 |
if args.output_dir and utils.is_main_process(): |
|
|
272 |
with (output_dir / f"testingLog_fold{fold}.txt").open("a") as f: |
|
|
273 |
f.write(json.dumps(log_stats) + "\n") |
|
|
274 |
|
|
|
275 |
total_time = time.time() - start_time |
|
|
276 |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
|
277 |
print('Training time {}'.format(total_time_str)) |
|
|
278 |
|
|
|
279 |
output_dir = Path(args.output_dir) |
|
|
280 |
AverageBestModelStatus = {'AverageCIndexTest':np.mean(CIndexTest), 'AverageCIndexExternalTest':np.mean(CIndexExternalTest),\ |
|
|
281 |
'AverageIPCWCIndexTest':np.mean(IPCWCIndexTest), 'AverageIPCWCIndexExternalTest':np.mean(IPCWCIndexExternalTest),\ |
|
|
282 |
'AverageIBSTest':np.mean(IBSTest),'AverageIBSExternalTest':np.mean(IBSExternalTest),\ |
|
|
283 |
'stdCIndexTest':np.std(CIndexTest), 'stdCIndexExternalTest':np.std(CIndexExternalTest),\ |
|
|
284 |
'stdIPCWCIndexTest':np.std(IPCWCIndexTest), 'stdIPCWCIndexExternalTest':np.std(IPCWCIndexExternalTest),\ |
|
|
285 |
'stdIBSTest':np.std(IBSTest),'stdIBSExternalTest':np.std(IBSExternalTest),'AverageCorrelationCoeffTest':np.mean(correlationCoeffTest)} |
|
|
286 |
log_stats = { |
|
|
287 |
**{f'{k}': v for k, v in AverageBestModelStatus.items()} |
|
|
288 |
} |
|
|
289 |
if args.output_dir and utils.is_main_process(): |
|
|
290 |
with (output_dir / "logAverage.txt").open("a") as f: |
|
|
291 |
f.write(json.dumps(log_stats) + "\n") |
|
|
292 |
print(AverageBestModelStatus) |
|
|
293 |
|
|
|
294 |
if __name__ == '__main__': |
|
|
295 |
now = datetime.datetime.now() |
|
|
296 |
dt_string = now.strftime("%d%m%Y_%H%M%S") |
|
|
297 |
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()]) |
|
|
298 |
args = parser.parse_args() |
|
|
299 |
|
|
|
300 |
if args.cuda_devices is not None: |
|
|
301 |
os.environ["CUDA_VISIBLE_DEVICES"]=args.cuda_devices |
|
|
302 |
if args.output_dir: |
|
|
303 |
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
304 |
hyperparameters = vars(args) |
|
|
305 |
hyperparameter_stas = { |
|
|
306 |
**{f'{k}': v for k, v in hyperparameters.items()} |
|
|
307 |
} |
|
|
308 |
if args.output_dir and utils.is_main_process(): |
|
|
309 |
with (Path(args.output_dir) / "logHyperparameters.txt").open("a") as f: |
|
|
310 |
f.write(json.dumps(hyperparameter_stas) + "\n") |
|
|
311 |
main(args) |