[15fc01]: / Cluster-ViT / main.py

Download this file

312 lines (269 with data), 16.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import datetime
import json
import random
from re import A
import time
from pathlib import Path
import os
from torch.utils.data.dataset import Subset
from datasets.MyData import MyDataset
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler,random_split
from sklearn.model_selection import KFold
import util.misc as utils
from models.engine import evaluate, train_one_epoch_SAM,test
from models import build_model
from models.sam import SAM
from torch.utils.tensorboard import SummaryWriter
import pandas as pd
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--position_embedding', default='3Dlearned', type=str,
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true',default=False)
parser.add_argument('--pretrained_path', default='', type=str, help="path of pretrained model")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--output_dir', default='./',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--kfoldNum', default=5, type=int)
parser.add_argument('--dataDir',type=str,help='path of the data')
parser.add_argument('--externalDataDir',type=str,help='path of the external test data')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# cluster parameters
parser.add_argument('--group_Q', action='store_true', default=False)
parser.add_argument('--group_K', action='store_true', default=False)
parser.add_argument('--cuda-devices', default=None)
parser.add_argument('--max_num_cluster', default=64, type=int)
parser.add_argument('--sequence_len', default=15000, type=int)
# gridsearch parameters
parser.add_argument('--withPosEmbedding', action='store_true', default=False)
parser.add_argument('--seq_pool', action='store_true', default=False,help='use attention pooling layer for aggregating patch risk score')
parser.add_argument('--withLN', action='store_true', default=False)
parser.add_argument('--withEmbeddingPreNorm', action='store_true', default=False,help='Pre-normalize the patch representation before feeding them into ViT')
parser.add_argument('--input_pool', action='store_true', default=False)
parser.add_argument('--mixUp', action='store_true', default=False)
parser.add_argument('--SAM', action='store_true', default=False)
return parser
def main(args):
allDataset = MyDataset(root_dir=args.dataDir,sequence_len=args.sequence_len,max_num_cluster=args.max_num_cluster,status = 'test',input_pool=args.input_pool)
kfoldSplits=KFold(n_splits=args.kfoldNum,shuffle=True,random_state=args.seed)
splitIdx = kfoldSplits.split(np.arange(len(allDataset)))
CIndexTest = []
CIndexExternalTest = []
IBSTest = []
IBSExternalTest = []
correlationCoeffTest = []
IPCWCIndexTest = []
IPCWCIndexExternalTest = []
for fold, (train_idx,test_idx) in enumerate(splitIdx):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if args.pretrained_path!='':
pretrainedModel = torch.load(args.pretrained_path)
model_without_ddp.load_state_dict(pretrainedModel['model'], strict=False)
if args.SAM:
base_optimizer = torch.optim.Adam # define an optimizer for the "sharpness-aware" update
optimizer_SAM = SAM(model_without_ddp.parameters(), base_optimizer,lr=args.lr,weight_decay=args.weight_decay)
optimizer = optimizer_SAM
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
else:
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
best_loss = 1e12
tb_writer = SummaryWriter()
dataset_train,dataset_val = random_split(Subset(allDataset,train_idx),[int(len(train_idx)*0.8),len(train_idx)-int(len(train_idx)*0.8)],generator=torch.Generator().manual_seed(args.seed))
dataset_test = Subset(allDataset,test_idx)
dataset_train_all = Subset(allDataset,train_idx)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=False)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=None, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False,num_workers=args.num_workers)
data_loader_test = DataLoader(dataset_test, args.batch_size, sampler=sampler_test,
drop_last=False, num_workers=args.num_workers)
output_dir = Path(args.output_dir)
if args.kfoldNum>1:
output_dir = output_dir/f'fold{fold}'
output_dir.mkdir(parents=True, exist_ok=True)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
val_stats = evaluate(model, criterion, data_loader_train, device, args.output_dir,'Validation')
print(f"fold {fold}/{args.kfoldNum} Start training")
start_time = time.time()
# train the model
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch_SAM(
model, criterion, data_loader_train, optimizer, device, epoch,fold,tb_writer,
args.clip_max_norm,mixUp=args.mixUp,SAM=args.SAM)
lr_scheduler.step()
train_eval_stats = evaluate(
model, criterion, data_loader_train, device, args.output_dir,'Train')
val_stats = evaluate(
model, criterion, data_loader_val, device, args.output_dir, 'Validation')
test_stats = evaluate(
model, criterion, data_loader_test, device, args.output_dir, 'Test')
is_best = val_stats['loss'] < best_loss
best_loss = min(val_stats['loss'], best_loss)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
if is_best:
checkpoint_paths.append(output_dir / f'model_best.pth.tar')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'train_eval{k}': v for k, v in train_eval_stats.items()},
**{f'val_{k}': v for k, v in val_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
temploss = train_eval_stats
tb_writer.add_scalar('train/loss'+'fold{}'.format(fold), temploss['loss'], epoch)
tb_writer.add_scalar('train/CIndex'+'fold{}'.format(fold), temploss['CIndex'], epoch)
temploss = val_stats
tb_writer.add_scalar('val/loss'+'fold{}'.format(fold), temploss['loss'], epoch)
tb_writer.add_scalar('val/CIndex'+'fold{}'.format(fold), temploss['CIndex'], epoch)
temploss = test_stats
tb_writer.add_scalar('test/loss'+'fold{}'.format(fold), temploss['loss'], epoch)
tb_writer.add_scalar('test/CIndex'+'fold{}'.format(fold), temploss['CIndex'], epoch)
if args.output_dir and utils.is_main_process():
with (output_dir / f"trainingLog_fold{fold}.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# evaluate the best model on internal and external datasets
bestModelPath = output_dir / f'model_best.pth.tar'
bestCheckpoint = torch.load(bestModelPath)
bestModel, testcriterion = build_model(args)
bestModel.to(device)
bestModel.load_state_dict(bestCheckpoint['model'])
data_loader_train_all = DataLoader(dataset_train_all, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
dataset_external_test = MyDataset(root_dir=externalDataDir,sequence_len=args.sequence_len,max_num_cluster=args.max_num_cluster,status='externalTest',input_pool=args.input_pool)
dataset_external_test.status = 'externalTest'
data_loader_external_test = DataLoader(dataset_external_test, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
externalOutputDir = output_dir / 'externalTest'
Path(externalOutputDir).mkdir(parents=True, exist_ok=True)
internalTestBestModelStatus = test(bestModel, testcriterion, data_loader_test, data_loader_train_all, device, output_dir,fold,coxBiomarkerRisk)
externalTestBestModelStatus = test(bestModel, testcriterion, data_loader_external_test, data_loader_train_all, device, externalOutputDir,fold)
log_stats = {
**{f'testBestModel_{k}': v for k, v in internalTestBestModelStatus.items()},
**{f'ExternalTestBestModel_{k}': v for k, v in externalTestBestModelStatus.items()},
'fold': fold
}
CIndexTest.append(internalTestBestModelStatus['CIndex'])
CIndexExternalTest.append(externalTestBestModelStatus['CIndex'])
IPCWCIndexTest.append(internalTestBestModelStatus['IPCWCIndex'])
IPCWCIndexExternalTest.append(externalTestBestModelStatus['IPCWCIndex'])
IBSTest.append(internalTestBestModelStatus['IBSTest'])
IBSExternalTest.append(externalTestBestModelStatus['IBSTest'])
if args.output_dir and utils.is_main_process():
with (output_dir / f"testingLog_fold{fold}.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
output_dir = Path(args.output_dir)
AverageBestModelStatus = {'AverageCIndexTest':np.mean(CIndexTest), 'AverageCIndexExternalTest':np.mean(CIndexExternalTest),\
'AverageIPCWCIndexTest':np.mean(IPCWCIndexTest), 'AverageIPCWCIndexExternalTest':np.mean(IPCWCIndexExternalTest),\
'AverageIBSTest':np.mean(IBSTest),'AverageIBSExternalTest':np.mean(IBSExternalTest),\
'stdCIndexTest':np.std(CIndexTest), 'stdCIndexExternalTest':np.std(CIndexExternalTest),\
'stdIPCWCIndexTest':np.std(IPCWCIndexTest), 'stdIPCWCIndexExternalTest':np.std(IPCWCIndexExternalTest),\
'stdIBSTest':np.std(IBSTest),'stdIBSExternalTest':np.std(IBSExternalTest),'AverageCorrelationCoeffTest':np.mean(correlationCoeffTest)}
log_stats = {
**{f'{k}': v for k, v in AverageBestModelStatus.items()}
}
if args.output_dir and utils.is_main_process():
with (output_dir / "logAverage.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
print(AverageBestModelStatus)
if __name__ == '__main__':
now = datetime.datetime.now()
dt_string = now.strftime("%d%m%Y_%H%M%S")
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.cuda_devices is not None:
os.environ["CUDA_VISIBLE_DEVICES"]=args.cuda_devices
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
hyperparameters = vars(args)
hyperparameter_stas = {
**{f'{k}': v for k, v in hyperparameters.items()}
}
if args.output_dir and utils.is_main_process():
with (Path(args.output_dir) / "logHyperparameters.txt").open("a") as f:
f.write(json.dumps(hyperparameter_stas) + "\n")
main(args)