Diff of /model.py [000000] .. [ec103b]

Switch to unified view

a b/model.py
1
from simpletransformers.classification import (ClassificationArgs, ClassificationModel)
2
import pandas as pd
3
import pickle
4
5
# ### Read data from files
6
7
# In[ ]:
8
9
10
train_df = pd.read_csv('/Users/aakansha/Desktop/NCCS NLP for Histology Reports/Datasets for Trials/train.csv')
11
train_df['Combined Diagnosis'] = train_df['Diagnosis'] + train_df['Gross Description'] + train_df[
12
    'Microscgopic Description']
13
train_df = train_df[['Combined Diagnosis', 'Cancerous?']]
14
15
# ### Pre-process data
16
17
# In[ ]:
18
19
20
# Capitalize values
21
train_df['Cancerous?'] = train_df['Cancerous?'].str.upper()
22
23
train_df['Cancerous?'] = train_df['Cancerous?'].str.strip()
24
25
# Drop all NA rows
26
train_df = train_df.dropna(subset=['Cancerous?']).reset_index(drop=True)
27
28
# ## Roberta-Large
29
30
# In[ ]:
31
32
for n in [1]:
33
34
    curr_epoch = "Epoch" + str(n)
35
36
    # Configure model args
37
    model_args = ClassificationArgs(num_train_epochs=n)
38
    model_args.evaluate_during_training_steps = -1
39
    model_args.save_eval_checkpoints = False
40
    model_args.save_model_every_epoch = False
41
    model_args.learning_rate = 1e-5
42
    model_args.manual_seed = 4
43
    model_args.multiprocessing_chunksize = 5000
44
    model_args.no_cache = True
45
    model_args.reprocess_input_data = True
46
    model_args.train_batch_size = 16
47
    model_args.gradient_accumulation_steps = 2
48
    model_args.use_multiprocessing = True
49
    model_args.overwrite_output_dir = True
50
    model_args.labels_list = ['YES', 'NO']
51
52
    # model
53
    model_type = "roberta"
54
    model_name = "roberta-large"
55
56
    # Create Transformer Model
57
    model = ClassificationModel(model_type, model_name, num_labels=2, use_cuda=False, args=model_args)
58
59
    if __name__ == '__main__':
60
        # Train the model
61
        model.train_model(train_df)
62
        pickle.dump(model, open('model.pkl', 'wb'))
63
64