[ec103b]: / model.py

Download this file

65 lines (44 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from simpletransformers.classification import (ClassificationArgs, ClassificationModel)
import pandas as pd
import pickle
# ### Read data from files
# In[ ]:
train_df = pd.read_csv('/Users/aakansha/Desktop/NCCS NLP for Histology Reports/Datasets for Trials/train.csv')
train_df['Combined Diagnosis'] = train_df['Diagnosis'] + train_df['Gross Description'] + train_df[
'Microscgopic Description']
train_df = train_df[['Combined Diagnosis', 'Cancerous?']]
# ### Pre-process data
# In[ ]:
# Capitalize values
train_df['Cancerous?'] = train_df['Cancerous?'].str.upper()
train_df['Cancerous?'] = train_df['Cancerous?'].str.strip()
# Drop all NA rows
train_df = train_df.dropna(subset=['Cancerous?']).reset_index(drop=True)
# ## Roberta-Large
# In[ ]:
for n in [1]:
curr_epoch = "Epoch" + str(n)
# Configure model args
model_args = ClassificationArgs(num_train_epochs=n)
model_args.evaluate_during_training_steps = -1
model_args.save_eval_checkpoints = False
model_args.save_model_every_epoch = False
model_args.learning_rate = 1e-5
model_args.manual_seed = 4
model_args.multiprocessing_chunksize = 5000
model_args.no_cache = True
model_args.reprocess_input_data = True
model_args.train_batch_size = 16
model_args.gradient_accumulation_steps = 2
model_args.use_multiprocessing = True
model_args.overwrite_output_dir = True
model_args.labels_list = ['YES', 'NO']
# model
model_type = "roberta"
model_name = "roberta-large"
# Create Transformer Model
model = ClassificationModel(model_type, model_name, num_labels=2, use_cuda=False, args=model_args)
if __name__ == '__main__':
# Train the model
model.train_model(train_df)
pickle.dump(model, open('model.pkl', 'wb'))