Diff of /usage/usage2.py [000000] .. [5bd30d]

Switch to side-by-side view

--- a
+++ b/usage/usage2.py
@@ -0,0 +1,114 @@
+import os
+import time
+import glob
+import sys
+import numpy as np
+import openslide
+import matplotlib.pyplot as plt
+import cv2
+import matplotlib.gridspec as gridspec
+from mpl_toolkits.axes_grid1 import make_axes_locatable
+
+
+
+from PIL import Image
+sys.path.append('..')
+from DigiPathAI.Segmentation import getSegmentation
+
+
+digestpath_imgs = ['../examples/colon-cancer-1.tiff']
+
+models = ['dense']#, 'inception', 'deeplabv3', 'ensemble', 'epistemic']
+
+
+for path in digestpath_imgs:
+  ext = os.path.splitext(path)[1]
+  base_path = os.path.splitext(path)[0]
+
+  print (ext, base_path, base_path[:-5])
+  quick = True
+  tta_list = ['FLIP_LEFT_RIGHT', 'ROTATE_90'] #, 'ROTATE_180', 'ROTATE_270']
+  for model in models:
+
+    print (model, quick, path, "======================================")
+    if model == 'ensemble': 
+      quick = False
+    elif model == 'epistemic':
+      quick = False
+      tta_list = None
+    """
+    getSegmentation(path, 
+          patch_size  = 256, 
+          stride_size = 128,
+          batch_size  = 4,
+          quick       = quick,
+          tta_list    = tta_list,
+          crf         = False,
+          probs_path  = base_path + '-DigiPathAI_{}_probs'.format(model) + '.tiff',
+          mask_path   = base_path + '-DigiPathAI_{}_mask'.format(model) + '.tiff',
+          uncertainty_path   = base_path + '-DigiPathAI_{}_uncertainty'.format(model)+ '.tiff',
+          status      = None,
+          mask_level = 4,
+          model       = model,
+          mode        = 'colon')
+    """
+    slide = openslide.OpenSlide(path)
+    level = len(slide.level_dimensions) - 1
+    img_dimensions = slide.level_dimensions[-1]
+    img = np.array(slide.read_region((0,0), level, img_dimensions).convert('RGB'))
+
+    mask = openslide.OpenSlide(base_path + '-DigiPathAI_{}_mask'.format(model) + '.tiff')
+    level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in mask.level_dimensions])[0]
+    mask = np.array(mask.read_region((0,0), level, img_dimensions).convert('L'))
+    
+    probs = openslide.OpenSlide(base_path + '-DigiPathAI_{}_probs'.format(model) + '.tiff')
+    level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in probs.level_dimensions])[0]
+    probs = np.array(probs.read_region((0,0), level, img_dimensions).convert('L'))/255.0
+
+    gt = np.array(Image.open(base_path+ 'gt.jpg').convert('L').resize(img_dimensions))
+
+    fig, ax = plt.subplots(2, 2, figsize=(14, 20))
+    fig.tight_layout()
+    im_ = ax[0][0].imshow(img)
+    ax[0][0].set_xticklabels([])
+    ax[0][0].set_yticklabels([])
+    ax[0][0].set_xticks([])
+    ax[0][0].set_yticks([])
+    ax[0][0].set_aspect('equal')
+    ax[0][0].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
+    # ax[0][0].title.set_text("WSI Slide")
+
+    gt_ = ax[0][1].imshow(gt,cmap='gray')
+    ax[0][1].set_xticklabels([])
+    ax[0][1].set_yticklabels([])
+    ax[0][1].set_xticks([])
+    ax[0][1].set_yticks([])
+    ax[0][1].set_aspect('equal')
+    ax[0][1].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
+    # ax[0][1].title.set_text("Ground Truth")
+
+    pred_ = ax[1][1].imshow(mask,cmap='gray')
+    ax[1][1].set_xticklabels([])
+    ax[1][1].set_yticklabels([])
+    ax[1][1].set_xticks([])
+    ax[1][1].set_yticks([])
+    ax[1][1].set_aspect('equal')
+    ax[1][1].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
+    # ax[1][1].title.set_text("Ground Truth")
+
+    prob_map_ = ax[1][0].imshow(probs, cmap=plt.cm.jet)
+    ax[1][0].set_xticklabels([])
+    ax[1][0].set_yticklabels([])
+    ax[1][0].set_xticks([])
+    ax[1][0].set_yticks([])
+    ax[1][0].set_aspect('equal')
+    ax[1][0].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
+    # ax[1][0].title.set_text("Probability Map")
+
+    cax = fig.add_axes([ax[1][0].get_position().x1 + 0.01,
+              ax[1][0].get_position().y0,
+              0.01,
+              ax[1][0].get_position().y1-ax[1][0].get_position().y0])
+    fig.colorbar(prob_map_, cax=cax)
+
+    plt.savefig('im2.png',bbox_inches = 'tight',pad_inches = 0.1)