import os
import time
import glob
import sys
import numpy as np
import openslide
import matplotlib.pyplot as plt
import cv2
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1 import make_axes_locatable
from PIL import Image
sys.path.append('..')
from DigiPathAI.Segmentation import getSegmentation
digestpath_imgs = ['../examples/colon-cancer-1.tiff']
models = ['dense']#, 'inception', 'deeplabv3', 'ensemble', 'epistemic']
for path in digestpath_imgs:
ext = os.path.splitext(path)[1]
base_path = os.path.splitext(path)[0]
print (ext, base_path, base_path[:-5])
quick = True
tta_list = ['FLIP_LEFT_RIGHT', 'ROTATE_90'] #, 'ROTATE_180', 'ROTATE_270']
for model in models:
print (model, quick, path, "======================================")
if model == 'ensemble':
quick = False
elif model == 'epistemic':
quick = False
tta_list = None
"""
getSegmentation(path,
patch_size = 256,
stride_size = 128,
batch_size = 4,
quick = quick,
tta_list = tta_list,
crf = False,
probs_path = base_path + '-DigiPathAI_{}_probs'.format(model) + '.tiff',
mask_path = base_path + '-DigiPathAI_{}_mask'.format(model) + '.tiff',
uncertainty_path = base_path + '-DigiPathAI_{}_uncertainty'.format(model)+ '.tiff',
status = None,
mask_level = 4,
model = model,
mode = 'colon')
"""
slide = openslide.OpenSlide(path)
level = len(slide.level_dimensions) - 1
img_dimensions = slide.level_dimensions[-1]
img = np.array(slide.read_region((0,0), level, img_dimensions).convert('RGB'))
mask = openslide.OpenSlide(base_path + '-DigiPathAI_{}_mask'.format(model) + '.tiff')
level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in mask.level_dimensions])[0]
mask = np.array(mask.read_region((0,0), level, img_dimensions).convert('L'))
probs = openslide.OpenSlide(base_path + '-DigiPathAI_{}_probs'.format(model) + '.tiff')
level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in probs.level_dimensions])[0]
probs = np.array(probs.read_region((0,0), level, img_dimensions).convert('L'))/255.0
gt = np.array(Image.open(base_path+ 'gt.jpg').convert('L').resize(img_dimensions))
fig, ax = plt.subplots(2, 2, figsize=(14, 20))
fig.tight_layout()
im_ = ax[0][0].imshow(img)
ax[0][0].set_xticklabels([])
ax[0][0].set_yticklabels([])
ax[0][0].set_xticks([])
ax[0][0].set_yticks([])
ax[0][0].set_aspect('equal')
ax[0][0].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
# ax[0][0].title.set_text("WSI Slide")
gt_ = ax[0][1].imshow(gt,cmap='gray')
ax[0][1].set_xticklabels([])
ax[0][1].set_yticklabels([])
ax[0][1].set_xticks([])
ax[0][1].set_yticks([])
ax[0][1].set_aspect('equal')
ax[0][1].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
# ax[0][1].title.set_text("Ground Truth")
pred_ = ax[1][1].imshow(mask,cmap='gray')
ax[1][1].set_xticklabels([])
ax[1][1].set_yticklabels([])
ax[1][1].set_xticks([])
ax[1][1].set_yticks([])
ax[1][1].set_aspect('equal')
ax[1][1].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
# ax[1][1].title.set_text("Ground Truth")
prob_map_ = ax[1][0].imshow(probs, cmap=plt.cm.jet)
ax[1][0].set_xticklabels([])
ax[1][0].set_yticklabels([])
ax[1][0].set_xticks([])
ax[1][0].set_yticks([])
ax[1][0].set_aspect('equal')
ax[1][0].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
# ax[1][0].title.set_text("Probability Map")
cax = fig.add_axes([ax[1][0].get_position().x1 + 0.01,
ax[1][0].get_position().y0,
0.01,
ax[1][0].get_position().y1-ax[1][0].get_position().y0])
fig.colorbar(prob_map_, cax=cax)
plt.savefig('im2.png',bbox_inches = 'tight',pad_inches = 0.1)