--- a +++ b/man/ClassVectoringDT.Rd @@ -0,0 +1,53 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/DIscBIO-generic-ClassVectoringDT.R +\name{ClassVectoringDT} +\alias{ClassVectoringDT} +\alias{ClassVectoringDT,DISCBIO-method} +\title{Generating a class vector to be used for the decision tree analysis.} +\usage{ +ClassVectoringDT( + object, + Clustering = "K-means", + K, + First = "CL1", + Second = "CL2", + sigDEG, + quiet = FALSE +) + +\S4method{ClassVectoringDT}{DISCBIO}( + object, + Clustering = "K-means", + K, + First = "CL1", + Second = "CL2", + sigDEG, + quiet = FALSE +) +} +\arguments{ +\item{object}{\code{DISCBIO} class object.} + +\item{Clustering}{Clustering has to be one of the following: ["K-means", +"MB"]. Default is "K-means"} + +\item{K}{A numeric value of the number of clusters.} + +\item{First}{A string vector showing the first target cluster. Default is +"CL1"} + +\item{Second}{A string vector showing the second target cluster. Default is +"CL2"} + +\item{sigDEG}{A data frame of the differentially expressed genes (DEGs) +generated by running "DEGanalysis()" or "DEGanalysisM()".} + +\item{quiet}{If `TRUE`, suppresses intermediary output} +} +\value{ +A data frame. +} +\description{ +This function generates a class vector for the input dataset so + the decision tree analysis can be implemented afterwards. +}