[28e211]: / man / ClassVectoringDT.Rd

Download this file

54 lines (46 with data), 1.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/DIscBIO-generic-ClassVectoringDT.R
\name{ClassVectoringDT}
\alias{ClassVectoringDT}
\alias{ClassVectoringDT,DISCBIO-method}
\title{Generating a class vector to be used for the decision tree analysis.}
\usage{
ClassVectoringDT(
object,
Clustering = "K-means",
K,
First = "CL1",
Second = "CL2",
sigDEG,
quiet = FALSE
)
\S4method{ClassVectoringDT}{DISCBIO}(
object,
Clustering = "K-means",
K,
First = "CL1",
Second = "CL2",
sigDEG,
quiet = FALSE
)
}
\arguments{
\item{object}{\code{DISCBIO} class object.}
\item{Clustering}{Clustering has to be one of the following: ["K-means",
"MB"]. Default is "K-means"}
\item{K}{A numeric value of the number of clusters.}
\item{First}{A string vector showing the first target cluster. Default is
"CL1"}
\item{Second}{A string vector showing the second target cluster. Default is
"CL2"}
\item{sigDEG}{A data frame of the differentially expressed genes (DEGs)
generated by running "DEGanalysis()" or "DEGanalysisM()".}
\item{quiet}{If `TRUE`, suppresses intermediary output}
}
\value{
A data frame.
}
\description{
This function generates a class vector for the input dataset so
the decision tree analysis can be implemented afterwards.
}