|
a |
|
b/code/data_provider.py |
|
|
1 |
import numpy as np |
|
|
2 |
import os |
|
|
3 |
# import tensorflow as tf |
|
|
4 |
import h5py |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
def load_h5_all(file, is_training): |
|
|
8 |
hf = h5py.File(file, 'r+') |
|
|
9 |
label = hf['label'][:][:] |
|
|
10 |
num_samples = len(label) |
|
|
11 |
train_size = num_samples - test_size |
|
|
12 |
feat = hf['feature'][:][:, :] |
|
|
13 |
gene = hf['gene_name'][:] |
|
|
14 |
sample = hf['sample'][:] |
|
|
15 |
print('%s has data:', feat.shape) |
|
|
16 |
# train_dataset = tf.data.Dataset.from_tensor_slices((feat[:train_size, :], label[:train_size])) #not using now |
|
|
17 |
# test_dataset = tf.data.Dataset.from_tensor_slices((feat[-test_size:], label[-test_size:])) #not using now |
|
|
18 |
# train_dataset = tf.data.Dataset.from_generator((feat0[:train_size, :], label[:train_size])) |
|
|
19 |
# test_dataset = tf.data.Dataset.from_generator((feat0[-test_size:], label[-test_size:])) |
|
|
20 |
|
|
|
21 |
return feat, label, gene, sample |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
if __name__ == '__main__': |
|
|
26 |
m_rna, label, gene, sample_id = load_h5_all('../data_process/tcga.h5', True) |
|
|
27 |
|