import numpy as np
import os
# import tensorflow as tf
import h5py
def load_h5_all(file, is_training):
hf = h5py.File(file, 'r+')
label = hf['label'][:][:]
num_samples = len(label)
train_size = num_samples - test_size
feat = hf['feature'][:][:, :]
gene = hf['gene_name'][:]
sample = hf['sample'][:]
print('%s has data:', feat.shape)
# train_dataset = tf.data.Dataset.from_tensor_slices((feat[:train_size, :], label[:train_size])) #not using now
# test_dataset = tf.data.Dataset.from_tensor_slices((feat[-test_size:], label[-test_size:])) #not using now
# train_dataset = tf.data.Dataset.from_generator((feat0[:train_size, :], label[:train_size]))
# test_dataset = tf.data.Dataset.from_generator((feat0[-test_size:], label[-test_size:]))
return feat, label, gene, sample
if __name__ == '__main__':
m_rna, label, gene, sample_id = load_h5_all('../data_process/tcga.h5', True)