Switch to side-by-side view

--- a
+++ b/docs/source/notes/dtba/dbta.rst
@@ -0,0 +1,82 @@
+Drug Target Binding Affinity (DTBA) Model
+================================================
+
+
+.. code-block:: python
+
+	class DeepPurpose.models.DBTA
+
+**Drug Target Binding Affinity (DBTA)** (`Source <https://github.com/kexinhuang12345/DeepPurpose/blob/master/DeepPurpose/models.py#L509>`_)  include all component, including drug encoder, target encoder and classifier/regressor. 
+
+
+**constructor** create  an instance of DBTA. 
+
+.. code-block:: python
+
+	__init__(self, **config)
+
+
+* **config** (kwargs, keyword arguments) - specify the parameter of DBTA.  
+	* **drug_encoding** (str) - Encoder mode for drug. It can be "transformer", "MPNN", "CNN", "CNN_RNN" ...,
+	* **target_encoding** (str) - Encoder mode for protein. It can be "transformer", "CNN", "CNN_RNN" ..., 
+	* **result_folder** (str) - directory that store the learning log/results. 
+	* **concrete parameter for encoder model** (repeated)
+
+
+**test_** include all the test procedure. 
+
+.. code-block:: python
+
+
+	test_(self, data_generator, model, repurposing_mode = False, test = False):
+
+* **data_generator** (iterator) - iterator of torch.utils.data.DataLoader. It can be test data or validation data. 
+* **model** (DeepPurpose.models.Classifier) - model of DBTA. 
+* **repurposing_mode** (bool) - If repurposing_mode is True, then do repurposing. Otherwise, do compute the accuracy (including AUC score). 
+* **test** (bool) - If test is True, plot ROC-AUC and PR-AUC curve. Otherwise, pass. 
+
+
+**train** include all the training procedure. 
+
+.. code-block:: python
+
+	train(self, train, val, test = None, verbose = True)
+
+* **train** (torch.utils.data.dataloader) - Train data loader
+* **val** (torch.utils.data.dataloader) - Valid data loader
+* **test** (torch.utils.data.dataloader) - Test data loader
+* **verbose** (bool) - If verbose is True, then print training record every 100 iterations. 
+
+
+**predict** include all the inference procedure. 
+
+.. code-block:: python
+
+	 predict(self, df_data)
+
+* **df_data** (pd.DataFrame) - specify data that we need to predict. 
+
+
+**save_model** save the well-trained model to specific directory. 
+
+.. code-block:: python
+
+	save_model(self, path_dir) 
+
+* **path_dir** (str, a directory) - the path where model is saved. 
+
+
+
+**load_pretrained** load the well-trained model so that we are able to make inference directly and don't have to train model from scratch. 
+
+.. code-block:: python
+
+	load_pretrained(self, path)
+
+* **path** (str, a directory) - the path where model is loaded. 
+
+
+
+
+
+